chung minh rang 1/3-2/3^2+3/3^3-4/3^4+....+99/3^99-100/3^100<3/16
chung minh rang 1/3 -1 /3^2 + 3/3^3 -4/3^4+...+99/3^99-100/3^100 < 3/16
Chung minh rang: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}<\frac{3}{16}\)
Dat A=1/3-2/32+3/33-4/34+...+99/399-100/3100
3A=1-2/3+3/32-4/33+...+99/398-100/399
3A+A=1-1/3+1/32-1/33+...+1/398-1/399-100/3100=4A
4A.3=3-1+1/3-1/32+...+1/397-1/398-100/399=12A
4A+12A=3-100/399-1/399-100/3100
16A=3-300/3100-3/3100-100/3100=3-403/3100<3
A<3/16
Chung to...
chung minh rang 1/2!+2/3!+3/4!+....+99/100!<1
chumg minh rang 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
chung minh rang 1/2+2/3+3/4+ ....+99/100<1
nhanh minh tick
Ta có : 1/2 = 0,5
2/3 = 0,666...
=> 1/2 + 2/3 + ... + 99/100 = 0,5 + 0,666...+3/4 + ... + 99/100
= 1,1,6666... + 3/4 + ... +99/100 > 1
=> 1/2 + 2/3 + ... + 99/100 > 1
\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\le1\)
\(=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\le1\)
\(\Rightarrow1-\frac{1}{100}\le1\)
1/2 + 2/3 + 3/4 + ... + 99/100 < 1
= 2/2 - 1/2 + 3/3 - 1/3 + 4/4 - 1/4 + ... + 100/100 - 1/100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100 < 1 (đpcm)
chung minh rang : 1 / 2 ^ 2 + 1 / 3 ^ 2 + 1 / 4 ^ 2 + . . . + 1 / 100 ^ 2 < 99 / 100
Hình như sai đề thì phải chứ mk làm ko đc !!!
A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100)
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100
<=> A < 1 - 1/100 < 1 (đpcm)
So với thì đây
chung minh rang A=\(\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}<\frac{2}{9}\)
dễ mà mình làm hoài hà bạn nhân A cho \(\frac{1}{3}\)rồi sau đó cộng A và \(\frac{1}{3}\times A\) lại tiếp theo tự tính
chung minh 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
cho n=1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100 . Chung minh n < 3/16