Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Vi
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Ngọc Quý
10 tháng 11 2015 lúc 18:05

Gọi UCLN(2n + 1 ; 6n + 5) = d

2n + 1 chia hết cho d => 6n + 3 chia hết cho 3

Mà UCLN(6n + 3; 6n + 5) = 1

Do đó 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau

Nguyễn Thị Mỹ Duyên
Xem chi tiết
Hằng Phạm
5 tháng 1 2016 lúc 19:19

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

PhanMinhQuan
Xem chi tiết
Hân Đặng Bảo
20 tháng 12 2020 lúc 9:56

Chứng minh rằng hai số 2n+1 và 6n+5 nguyên tố cùng nhau với mọi số tự nhiên n 

Được cập nhật 17 tháng 3 2017 lúc 15:29

Toán lớp 6

Đinh Đức Hùng  CTV

17 tháng 3 2017 lúc 12:49

Gọi d∈ƯCLN(2n+1;6n+5) nên ta có :

2n+1⋮d và 6n+5⋮d

⇔3(2n+1)⋮d và 6n+5⋮d

⇔6n+3⋮d và 6n+5⋮d

⇒(6n+5)−(6n+3)⋮d

Gọi d∈ƯCLN(2n+1;6n+5) nên ta có :

2n+1⋮d và 6n+5⋮d

⇔3(2n+1)⋮d và 6n+5⋮d

⇔6n+3⋮d và 6n+5⋮d

⇒(6n+5)−(6n+3)⋮d

⇒2⋮d⇒d=2

Mà 2n+1;6n+5 là các số lẻ nên không thể có ước là 2

⇒d=1

⇒2n+1 và 6n+5 là nguyên tố cùng nhau

Khách vãng lai đã xóa
Đặng vân anh
Xem chi tiết
Đỗ Lê Tú Linh
26 tháng 7 2015 lúc 22:11

1)Gọi ƯCLN(2n+1;6n+5)=d

Ta có: 2n+1 chia hết cho d; 6n+5 chia hết cho d

=>3(2n+1) chia hết cho d; 6n+5 chia hết cho d

=>6n+3 chia hết cho d; 6n+5 chia hết cho d

mà 3;5 là 2 số nguyên tố cùng nhau

nên 6n+3 và 6n+5 là 2 số nguyên tố cùng nhau

hay 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau

=>đpcm

 

nguyen quynh trang
Xem chi tiết
jiyeontarakute
27 tháng 11 2015 lúc 11:37

Bạn bấm vào chữ xanh này nhé -> CMR với mọi x thuộc N* các cặp số sau đây là nguyên tố cùng nhau :a) n và n+1b) 3n+2 và 5n+3 c) 2n+1 và 2n+3đ) 2n+1 và 6n+5

Nguyễn Vân Phương Thùy
Xem chi tiết
màn đêm chết chóc
Xem chi tiết
Tran Le Khanh Linh
7 tháng 3 2020 lúc 21:36

Gọi d là ƯCLN (2n+1;6n+5)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}}}\)

=> (6n+5)-(6n+3) chia hết cho d

=> 2 chia hết cho d 

=> d={1;2}

Vì 2n+1 là số lẻ => 2n+1 không chia hết cho 2

=> d=1

Khách vãng lai đã xóa

Gọi ƯCLN(2n+1;6n+5) là d

Có \(2n+1⋮d\)

\(6n+5⋮d\)

=> \(3\left(2n+1\right)⋮d\)

\(6n+5⋮d\)

=>\(6n+3⋮d\)

\(6n+5⋮d\)

=>\(\left(6n+5\right)-\left(6n+3\right)\)\(⋮\)d

=>2 chia hết cho d

=> d thuộc Ư(2)={1;2}

Vì 2n+1 lẻ nên d khác 2

=> d bằng 1

Vậy....

Khách vãng lai đã xóa
Tên bạn là gì
Xem chi tiết
Hoàng Anh Tuấn
21 tháng 8 2015 lúc 8:16

đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5

ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d

=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d

=> ( 6n + 5) - 3( 2n + 1) : hết cho d

=> 2 : hết cho d

=> d = 2

mà 2n + 1 ko : hết cho d

=> d = 1( dpcm)

Thao Nhi
21 tháng 8 2015 lúc 8:29

a) Goi d la UCLN ( n ; n+1 )                       b) Goi d la UCLN ( 3n+2 ;5n+3)

n+1 chia het cho d                                             3n+2 chia het cho d-->5(3n+2) chia het cho d

n chia het cho d                                                 5n+3 chia het cho d-->3(5n+3) chia het cho d

-> n+1-n chia het cho d                                 ->5(3n+2)-3(5n+3) chia het cho d

-> 1 chia het cho d                                        -> 15n+10-15n-9 chia het cho d

Va n va n+1 la hai so ngto cung nhau            - -> 1 chia het cho d

                                                                      Vay 3n+2 va 5n+3 chia het cho d

c) Goi d la UCLN (2n+1;2n+3)                                 d) Goi d la UCLN (2n+1;6n+5)

2n+1 chia het cho d                                                2n+1 chia het cho d-->3(2n+1) chiA het cho d

2n+3 chia het cho d--> 2n+1+2 chia het cho d          6n+5 chia het cho d

->2 chia het cho d                                               ->6n+5-3(2n+1) chia het cho d

--> d \(\in\)U (2)-> d\(\in\) {1;2}                                     -> 6n+5-6n-3 chia het cho d

d=2 loai vi 2n+1 khong chia het cho 2-> d=1         ->2 chia het  cho d

Vay 2n+1 va 2n+3 la hai so ng to cung nhau         --> d \(\in\)U (2)-> d\(\in\) {1;2} 

                                                                           d=2 loai vi 5n+3 k chia het cho 2-->d=1

                                                                       vay 2n+1 va 6n+5 la2 so ng to cung nhAU

 

Nguyễn Huyền Trang
7 tháng 3 2018 lúc 21:01

ngu het