chung minh phan so 2n+3/4n+5 la toi gian
chung minh phan so sau toi gian
a. n+1/2n+3
b. 2n+3/4n+7
a. Gọi d là UCLN(n+1, 2n+3)
=> 2.(n +1) chia hết cho d và 2n + 3 chia hết cho d
=> 2n+2 cũng chia hết cho d
Mà 2n+2, 2n+3 là hai số nguyên liên tiếp => d =1
=> UCLN(n+1, 2n+3) = 1
Vậy \(\frac{n+1}{2n+3}\)là phân số tối giản
b. Tương tự
Chung to rang 3n - 5 phan 3 - 2n la phan so toi gian
Chung minh rang moi phan so dang n+1/2n+3 ( n thuoc N ) deu la phan so toi gian.
để p/số trên tối giản thì ƯCLN là 1,gọi số đó là d
n+1:d,2n+2:d
2n+3-2n-2:d
1:d
d=1
vậy p/số đó luôn tối giản
gọi ƯC(n+1;2n+3)=d
ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d
nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1
do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản
Giup to bai nay voi : Chung minh voi n thuoc N sao phan so sau la phan so toi gian 4n+1/6n+1
Gọi ước chung của 4n+1 và 6n+1 là số tự nhiên x.Ta có :
4n+1 và 6n+1 thuộc B(x) => 6(4n+1); 4(6n+1) hay 24n+6;24n+4 thuộc B(x)
=> (24n+6) - (24n+4) = 2 thuộc B(x) => x = 1;2 mà 4n;6n chẵn nên 4n+1;6n+1 lẻ (không thuộc B(2) )
=> x khác 2 và bằng 1 => 4n+1;6n+1 là 2 số nguyên tố cùng nhau
=> 4n+1 / 6n+1 là phân số tối giản (n thuộc N)
chung to phan so toi gian voi n thuoc n a , n+1/2n+3 b, 2n +3 /4n +8
Gọi d là ƯCLN của n + 1 và 2n + 3
Khi đó : n + 1 chia hết cho d , 2n + 3 chia hết cho d
<=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
<=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
a,Gọi d là ƯCLN của n+1 và 2n+3(d thuộc Z/ d khác 0)
=> n+1 chia hết cho d; 2n+ 3 chia hết cho d
=>(n+1)-(2n+3) chia hết cho d
=>1chia hết cho d=> d thuộc Ư của 1
=.> \(\frac{n+1}{2n+3}\)là ps tối giản
b, Gọi d là ƯCLN (2n+3;4n+8)(d thuộc Z/ d khác 0)
=>2n+3 chia hết cho d;4n+8 chia hết cho d
=>(2n+3)-(4n+8) chia hết cho d
=>(2n+3)-(2n+4) chia hết cho d
=>-1 chia hết cho d
=>\(\frac{2n+3}{4n+8}\)là ps tối giản
tim cac so tu nhien n de cac phan so sau la phan so toi gian
2n+3 tren 4n+1
Chung to rang phan so:
A= \(\dfrac{n+3}{2n+5}\) la phan so toi gian \(\forall\) x
GIUP MINH GAP NHOA!!!! MINH HUA SE BAO DAP
Gọi \(d=ƯCLN\left(n+3;2n+5\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+6⋮d\\2n+5⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+3;2n+5\right)=1\)
\(\Leftrightarrow\)Phân số \(\dfrac{n+3}{2n+5}\) tối giản với mọi n
Báo đáp j ế!
Gọi \(d\) là \(UCLN\left(n+3;2n+5\right)\)
\(\Rightarrow n+3⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)
\(\Rightarrow2n+5⋮d\)
\(\Leftrightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(2n+6-2n-5⋮d\)
\(1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\dfrac{n+3}{2n+5}\) tối giản với mọi \(n\in N\)
chung to \(\frac{2n+5}{n+3}\) la phan so toi gian
Gọi d là ƯCLN (2n+5; n+3)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+5⋮d\\2\left(n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\left\{\pm1\right\}\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản (đpcm)
Giải:
-Gọi ƯCLN(n+3,2n+5)=d
=>n+3 chia hết cho d =>2(n+3)=2n+6 chia hết cho d
=>2n+5 chia hết cho d
=>2n+6-2n+5=1 chia hết cho d
=>d=1.
=>n+3 và 2n+5 là hai số nguyên tố cùng nhau.
=> 2n+5/n+3 là phân số tối giản.
tim cac so tu nhien n de cac phan so sau la phan so toi gian a) 2n+3:4n+1 b) 3n+2:7n+1 c) 2n+7:5n+2