\(\left(-2\right).\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)....\left(-1\frac{1}{2000}\right)\)
\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)
\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)
\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)
\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)
\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)
\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)
\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)
\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)
\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)
\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)
\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)
\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)
\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)
\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)
\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)
\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)
\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)
TRÌNH BÀY GIÚP MÌNH NHA
Tìm tích:
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{1999^2}\right)\left(1-\frac{1}{2000^2}\right)\)
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)..\left(1-\frac{1}{2000^2}\right)\)
\(=\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}\cdot\frac{3.5}{4^2}\cdot\cdot\cdot\cdot\frac{1998.2000}{1999^2}\cdot\frac{1999.2001}{2000^2}\)
\(=\frac{1}{2}\cdot\frac{2001}{2000}=\frac{2001}{4000}\)
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{1999^2}\right)\left(1-\frac{1}{2000^2}\right)\)
=\(\left(\frac{4}{4}-\frac{1}{4}\right)\left(\frac{9}{9}-\frac{1}{9}\right)...\left(\frac{3996001}{3996001}-\frac{1}{3996001}\right)\left(\frac{4000000}{4000000}-\frac{1}{4000000}\right)\)
=\(\frac{3}{4}.\frac{8}{9}....\frac{3996000}{3996001}.\frac{3999999}{4000000}\)
=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{1998.2000}{1999.1999}.\frac{1999.2001}{2000.2000}\)
=\(\frac{1.3.2.4.3.6.....1998.2000.1999.2001}{2.2.3.3.4.4....1999.1999.2000.2000}=\frac{1.2001}{2.2000}=\frac{2001}{4000}\)
Tính:
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right).\left(1-\frac{1}{2000}\right)\)
\(=\frac{-1}{2}.\frac{-2}{3}......................\frac{-1998}{1999}.\frac{-1999}{2000}\)
\(=\frac{\left(-1\right).\left(-2\right)....................\left(-1999\right)}{1.2.3........................2000}\)
\(=\frac{-1}{2000}\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}=\frac{1}{2000}\)
duyệt đi
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right).\left(1-\frac{1}{2000}\right)\)
=\(\vec{\frac{1.2.3...1998.1999}{2.3.4...1999.2000}}\)\(=\frac{1}{2000}\)
Tính: \(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)....\left(1-\frac{1}{1+2+3+...+2000}\right)\)
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+...+100}\right)\)
\(A=\frac{2}{\left(1+2\right).2:2}.\frac{5}{\left(1+3\right).3:2}.\frac{9}{\left(1+4\right).4:2}...\frac{5049}{\left(1+100\right).100:2}\)
\(A=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{10098}{100.101}\)
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{99.102}{100.101}\)
\(A=\frac{1.2.3...99}{2.3.4...100}.\frac{4.5.6...102}{3.4.5...101}\)
\(A=\frac{1}{100}.\frac{102}{3}=100.34=\frac{1}{100}.34=\frac{17}{50}\)
\(D=\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{25}\right)\right]:\left[\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{25}\right)\right]\)
D= [(1-1/2)(1-1/3)...(1-1/25)]:[(1+1/2)(1+1/3)...(1+1/25)]
D= [1/2. 2/3. ... . 24/25]: [3/2. 4/3. ... . 26/25]
D= 1/25 : 2/26
D= 1/25 . 26/2= 13/25
Vậy D= 13/25
\(D=\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{25}\right)\right]\)\(:\left[\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{25}\right)\right]\)
\(D=\left[\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{24}{25}\right]:\left[\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{26}{25}\right]\)
\(D=\frac{1.2.3...24}{2.3.4...25}:\frac{3.4.5...26}{2.3.4...25}\)
\(D=\frac{1}{25}:13\)
\(D=\frac{1}{325}\)
a, \(\frac{4}{9.13}+\frac{11}{13.24}+\frac{7}{38.45}\)
b, \(\left(\frac{-3}{8}+\frac{5}{9}:\frac{-11}{37}\right).\left(\frac{33}{19}-\frac{7}{22}.\frac{47}{17}\right).\left(2-\frac{7}{13}.\frac{7}{26}\right)\)
c, \(3.\left|2-1\frac{1}{14}\right|-\left|3\left(\frac{-3}{7}\right)\right|-2\left(4,025-2,885\right)\)
d,\(\left(\frac{1}{4}-1\right)\left(\frac{1}{5}-1\right).....\left(\frac{1}{2000}-1\right)\left(\frac{1}{2001}-1\right)\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{n+1}\right)\left(n\in N\right)\)
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+.......+\frac{1}{20}\left(1+2+3+4....+20\right)\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=115\)
\(H=\frac{\left(1+97\right)\left(1+\frac{97}{2}\right)\left(1+\frac{97}{3}\right)\left(1+\frac{97}{4}\right)+...+\left(1+\frac{97}{99}\right)}{\left(1+99\right)\left(1+\frac{99}{2}\right)\left(1+\frac{99}{3}\right)\left(1+\frac{99}{4}\right)+...+\left(1+\frac{99}{97}\right)}\)
tính các tích sau với nEN, n lớn hơn bằng 2
a)\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n}\right)\)
b)\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1-\frac{1}{n}\right)\)
c)\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)