Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vũ Trường Sơn
Xem chi tiết
Đức Thuận Trần
22 tháng 10 2020 lúc 20:17

Lần sau bạn cho thêm cả dấu ngoặc cho dễ hiểu nhé :v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) \(\left(b,d\ne0\right)\)

Thay \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) vào \(\frac{a^2-b^2}{ab}\)\(\frac{c^2-d^2}{cd}\) ta có :

\(\left\{{}\begin{matrix}\frac{\left(b.k\right)^2-b^2}{b.k.b}\\\frac{\left(d.k\right)^2-d^2}{d.k.d}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2.k^2-b^2}{b^2.k}\\\frac{d^2.k^2-d^2}{d^2.k}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2\left(k^2-1\right)}{b^2.k}\\\frac{d^2\left(k^2-1\right)}{d^2.k}\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\frac{k^2-1}{k}\\\frac{k^2-1}{k}\end{matrix}\right.\)(vì b,d khác 0 nên \(b^2,d^2\) khác 0)

=> \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) (vì cùng bằng \(\frac{k^2-1}{k}\))

vậy \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) nếu \(\frac{a}{b}=\frac{c}{d}\)

lâu lắm không làm nên không chắc đâu :v

Khách vãng lai đã xóa
dream XD
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 16:50

undefined

Nguyễn Khắc Sinh
Xem chi tiết
Quốc Đạt
31 tháng 5 2016 lúc 20:14

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

Thầy Giáo Bá Đạo
2 tháng 9 2019 lúc 13:50

hello ib ko

Họ Nguyễn Dũng
5 tháng 1 2020 lúc 20:56
https://i.imgur.com/ykdB9uk.jpg
Khách vãng lai đã xóa
Bảo Châu Nguyễn
Xem chi tiết
Vũ Minh Tuấn
3 tháng 9 2020 lúc 10:06

Ta có:

\(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(1\right).\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\left(2\right).\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right).\)
 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
3 tháng 9 2020 lúc 10:23

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+c}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số bằng nhau )

Khách vãng lai đã xóa
thanh nguyen
Xem chi tiết
Akai Haruma
22 tháng 9 2021 lúc 18:56

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Ta có:

$\frac{ab}{cd}=\frac{b^2t}{d^2t}=\frac{b^2}{d^2}(1)$

Mặt khác:

$\frac{(a-b)^2}{(c-d)^2}=\frac{(bt-b)^2}{(dt-d)^2}=\frac{b^2(t-1)^2}{d^2(t-1)^2}=\frac{b^2}{d^2}(2)$

Từ $(1); (2)\Rightarrow \frac{ab}{cd}=\frac{(a-b)^2}{(c-d)^2}$

Do Nga
Xem chi tiết
trịnh hào phóng
Xem chi tiết
Bí Mật
Xem chi tiết
Lê Hào 7A4
Xem chi tiết
Lê Hào 7A4
1 tháng 3 2022 lúc 22:20

giúp mình với

Gia Nhi Nguyễn Lê
1 tháng 3 2022 lúc 22:23

Đặt ab=cd=k

 

Khi đó ta có :

a=bk và c=dk

Suy ra :

a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2-b2d2k2-d2

=b2.(k2-1)d2.(k2-1)

=b2d2(1)

Ta lại có :

Gia Nhi Nguyễn Lê
1 tháng 3 2022 lúc 22:23

 

Đặt ab=cd=k

Khi đó ta có :

a=bk và c=dk

Suy ra :

a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2-b2d2k2-d2

=b2.(k2-1)d2.(k2-1)

=b2d2(1)

Ta lại có :