Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen min0h hoang
Xem chi tiết
Sherry
23 tháng 1 2017 lúc 20:04

Bài 2: Cho x/y=y/z=z/x

+ Trường hợp 1: x/y=y/z=z/x=0

=> x = y= z = 0

=> z^576  =0

=> Không thoả mãn phân số

+ Trường hợp 2: x;y;z khác 0

Áp dụng tính chất của dãy tỉ số bằng nhau có:

x/y = y/z = z/x = (x+y+z)/(y+z+x) = 1

=> x = y = z

=> x^123 . y^456 = z^579

=> Phân số có giá trị = 1

k cho tớ nha!!!

Sherry
23 tháng 1 2017 lúc 20:05

Bài 1 bạn sửa lại dấu ngoặc được không? Tớ không hiểu. @+@

Châu Bình Phạm
30 tháng 3 2018 lúc 20:41

Bạn Sherry ơi trên đề chỉ cho trường hợp 2 thôi nha . x,y,z khác 0

Nguyễn Ngọc Châu Anh
Xem chi tiết
Gia Huy
19 tháng 6 2023 lúc 22:12

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Tên tôi là Thành
Xem chi tiết
Hoàng Phúc
11 tháng 3 2016 lúc 20:59

Theo t/c dãy tỉ số=nhau;

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (x+y+z \(\ne\) 0)

=>x=y=z

Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)

Vậy....

PHAM THI THAO NGUYEN
Xem chi tiết
Minh Bui Tuan Minh
4 tháng 8 2016 lúc 22:41

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y}\)=\(\frac{y}{z}\)=\(\frac{z}{x}\)=\(\frac{x+y+z}{x+y+z}\)= 1

=> N = x^( 123 + 456) = x^579

=> N = x^579 / 2^579

nguyen quynh trang
Xem chi tiết
ngonhuminh
8 tháng 1 2017 lúc 16:20

Công hết lại=> x=y=z

670+670+672=2012

\(M=1\)

Cao Thành Lộc
Xem chi tiết
Nguyễn Phú Trọng
30 tháng 12 2016 lúc 16:28

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

A=\(\frac{y+z+z+x+x+y}{x+y+z}\)=\(\frac{2x+2y+2z}{x+y+z}\)=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=2

Thắng Nguyễn
30 tháng 12 2016 lúc 17:28

\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)

\(\Rightarrow\frac{x}{y+z}+1=\frac{y}{z+x}+1=\frac{z}{x+y}+1\)

\(\Rightarrow\frac{x+y+z}{y+z}=\frac{y+z+x}{z+x}=\frac{z+x+y}{x+y}\)

Vì x+y+z khác 0 nên ta xét \(x+y+z\ne0\) suy ra x=y=z

Khi đó \(A=\frac{x+x}{x}+\frac{x+x}{x}+\frac{x+x}{x}=\frac{2x}{x}+\frac{2x}{x}+\frac{2x}{x}=2+2+2=6\)

Harry James Potter
Xem chi tiết
Nguyễn Hà Trang
Xem chi tiết
ngonhuminh
27 tháng 12 2016 lúc 21:39

Câu trả lời là thiếu dự kiện

Hương Nguyễn
Xem chi tiết