Tìm n ( n\(\in\)N) biết \(\frac{x}{15}\)=\(\frac{4}{5}\)
tìm x thuộc N*,biết
\(\frac{x}{5}-\frac{2}{y}=\frac{2}{15}\)
\(\frac{x}{5}-\frac{2}{y}=\frac{2}{15}\)
\(\Rightarrow\frac{2}{y}=\frac{2}{15}-\frac{x}{5}\)
\(\Rightarrow\frac{2}{y}=\frac{2-3x}{15}\)
\(\Rightarrow y(2-3x)=30\)
Tự làm nốt
a) Đơn giản biểu thức: \(A=x.\left(-1\right)^n.\left|x\right|\) \(\forall n\in N\) và \(x\in Q\)
b) Tìm x, y, z, t biết:
\(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\) và \(x+y+z+t=315\)
a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)
\(A=x\cdot\left(-1\right)\cdot x\)
\(A=-x^2\)
b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)
Xét :
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)
\(\frac{x}{8}=6\Leftrightarrow x=48\)
\(\frac{y}{12}=6\Leftrightarrow y=72\)
\(\frac{z}{15}=6\Leftrightarrow z=90\)
\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)
ta có
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)
ta lại có
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)
\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)
ta kết hợp (1) và (2)
\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)
theo tính chất dãy tỉ số = nhau
có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)
thay vào
Bạn CTV ơi, lỡ may n chẵn thì (-1)n =1 mak bạn, mình nghĩ phải xét nhiều trường hợp chứ??? Đó lak nghĩ thoii
\(\text{( \frac{67}{11} + \frac{2}{33} − \frac{15}{117} ) . ( \frac{1}{3} − \frac{1}{4}− \frac{1}{12})}\)Cho biểu thức A = \(\frac{5}{n-1};\left(n\in z\right)\)
Tìm điều kiện của n để A là phân số
Tìm tất cả giá trị nguyên của n để A là số nguyên
Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)
Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
Tìm x \(\in\)N biết \(\frac{1}{3}+\frac{3}{35}<\frac{x}{210}<\frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)
Bài 1:Tìm các số nguyên x để:
a. 18/17+ 5/17< x/17<6/17+9/17
b.1/3+3/35< x/210< 4/7+ 3/5+ 1/3
Bài 2: Tìm x biết ( 11/12+ 11/12.23+11/23.24+...+11/89.100)+ x=5/3
Bài 3: Tìm số nguyên n để biểu thức sau có giá trị là số nguyên: 4/n-1+ 6/n-1-3/n-1
Bài 4:Tính tổng:
a. 1/1.2+ 1/2.3+ 1/3.4+...+1/98.99+ 1/99.100 ; b. 3/2.5+ 3/5.8+ ...+ 3/17.20
Bài 5: Tìm số nguyên x biết
a. x: 3\(\frac{1}{15}\)= 1\(\frac{1}{2}\); b.x. 15/28= 3/20; 5\(\frac{4}{7}\): x =13
giải phương trình sau
\(\frac{5x+\frac{3x-4}{5}}{15}=\frac{\frac{3-x}{15}+7x}{5}+1-x\)
\(\frac{x+7}{3}+\frac{x+5}{4}=\frac{x+3}{5}+\frac{x+1}{6}\)gợi ý : cộng thêm 2
\(\frac{x+m}{n+p}+\frac{x+n}{p+m}+\frac{x+p}{n+m}+3=0\)với m,n,p là số dương
huhu giúp mình với
\(\frac{x+7}{3}+\frac{x+5}{4}=\frac{x+3}{5}+\frac{x+1}{6}\)
\(\Rightarrow\frac{x+7}{3}+2+\frac{x+5}{4}+2=\frac{x+3}{5}+2+\frac{x+1}{6}+2\)
\(\Rightarrow\frac{x+13}{3}+\frac{x+13}{4}=\frac{x+13}{5}+\frac{x+13}{6}\)
\(\Rightarrow\frac{x+13}{3}+\frac{x+13}{4}-\frac{x+13}{5}-\frac{x+13}{6}=0\)
\(\Rightarrow\left(x+13\right)\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
Vì \(\left(\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}\right)\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>0\)
\(\Rightarrow x+13=0\Leftrightarrow x=-13\)
\(\frac{x+m}{n+p}+\frac{x+n}{p+m}+\frac{x+p}{n+m}+3=0\)
\(\Rightarrow\frac{x+m}{n+p}+1+\frac{x+n}{p+m}+1+\frac{x+p}{n+m}+1=0\)
\(\Rightarrow\frac{x+m+n+p}{n+p}+\frac{x+m+n+p}{p+m}+\frac{x+m+n+p}{n+m}=0\)
\(\Rightarrow\left(x+m+n+p\right)\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{n+m}\right)=0\)
Vì m,n,p là số dương nên \(\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{n+m}\right)>0\)
\(\Rightarrow x+m+n+p=0\Rightarrow x=-\left(m+n+p\right)\)
\(\frac{5x+\frac{3x-4}{5}}{15}=\frac{\frac{3-x}{15}+7x}{5}+1-x\)
\(\Rightarrow\frac{\frac{25x+3x-4}{5}}{15}=\frac{\frac{3-x+105x}{15}}{5}+1-x\)
\(\Rightarrow\frac{\frac{28x-4}{5}}{15}=\frac{\frac{3+104x}{15}}{5}+1-x\)
\(\Rightarrow\frac{28x-4}{75}=\frac{3+104x}{75}+1-x\)
\(\Rightarrow\frac{28x-4}{75}=\frac{3+104x+75-75x}{75}\)
\(\Rightarrow\frac{28x-4}{75}=\frac{78+29x}{75}\)
\(\Rightarrow28x-4=78+29x\)
\(\Rightarrow x=-82\)
tìm số x e N*, biết:\(\frac{n}{5}\)<\(\frac{4}{n}\)<\(\frac{n}{3}\)
Bài giải
\(\frac{n}{5}< \frac{4}{n}\text{ }\Rightarrow\text{ }n^2< 4\cdot5\text{ }\Rightarrow\text{ }n^2< 20\)
\(\frac{4}{n}< \frac{n}{3}\text{ }\Rightarrow\text{ }n^2>3\cdot\text{ }4\text{ }\Rightarrow\text{ }n^2>12\)
\(\text{ }\Rightarrow\text{ }12\text{ }< n^2< 20\text{ }\Rightarrow\text{ }n^2=16\text{ }\Rightarrow\text{ }n=4\)
Ta có n/5<4/n suy ra n2<20 (1)
4/n<n/3 suy ra 12<n2 (2)
Từ (1) và (2) suy ra 12<n2 <20 (3)
Mà n là số tự nhiên khác 0 (4)
từ (3) và (4) suy ra n=4
1.lim(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\))
2.Tìm tất cả các giá trị của a sao cho lim\(\frac{4^n+a.5^n}{\left(2a-1\right).5^n+2^n}\)=1
3. Cho \(a\in R\)và lim(\(\sqrt{n^2+an+4}-n+1=5\)).Tìm a
4.Cho\(Lim_{(x->2)}f\left(x\right)=5\). Tìm giới hạn \(lim_{\left(x->2\right)}\sqrt{[f\left(x\right)-3]x}\)
Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)
a/ chứng tỏ rằng nếu \(\frac{m}{n}=\frac{p}{q}\)thì \(\frac{m}{n}=\frac{m+p}{n+q}\)hay \(\frac{m}{n}=\frac{m-p}{n-q}\)
b/ tìm x, y biết \(\frac{x}{7}=\frac{y}{5}\)và x + y =36
c/ tìm phân số bằng phân số \(\frac{14}{15}\)và biết rằng hiệu của tử và mẫu của nó bằng 8