Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cà thái thành
Xem chi tiết
Huỳnh Quang Sang
28 tháng 3 2019 lúc 19:13

\(\frac{x}{5}-\frac{2}{y}=\frac{2}{15}\)

\(\Rightarrow\frac{2}{y}=\frac{2}{15}-\frac{x}{5}\)

\(\Rightarrow\frac{2}{y}=\frac{2-3x}{15}\)

\(\Rightarrow y(2-3x)=30\)

Tự làm nốt

ttt
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 7 2020 lúc 20:23

a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)

\(A=x\cdot\left(-1\right)\cdot x\)

\(A=-x^2\)

b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)

Xét :

\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)

\(\frac{x}{8}=6\Leftrightarrow x=48\)

\(\frac{y}{12}=6\Leftrightarrow y=72\)

\(\frac{z}{15}=6\Leftrightarrow z=90\)

\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)

Khách vãng lai đã xóa
Trí Tiên亗
11 tháng 7 2020 lúc 20:41

ta có

 \(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)

ta lại có

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)

\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)

ta kết hợp (1) và (2) 

\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)

theo tính chất dãy tỉ số = nhau

có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)

thay vào

Khách vãng lai đã xóa
ttt
12 tháng 7 2020 lúc 8:31

Bạn CTV ơi, lỡ may n chẵn thì (-1)=1 mak bạn, mình nghĩ phải xét nhiều trường hợp chứ??? Đó lak nghĩ thoii

Khách vãng lai đã xóa
hankhanhlinh13
Xem chi tiết
Huỳnh Quang Sang
5 tháng 5 2019 lúc 19:16

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)
Nguyễn Hà Vi 47
Xem chi tiết
Nguyễn Hoàng Liên
Xem chi tiết
Kim Trân Ni
Xem chi tiết
Kiệt Nguyễn
6 tháng 2 2020 lúc 13:07

\(\frac{x+7}{3}+\frac{x+5}{4}=\frac{x+3}{5}+\frac{x+1}{6}\)

\(\Rightarrow\frac{x+7}{3}+2+\frac{x+5}{4}+2=\frac{x+3}{5}+2+\frac{x+1}{6}+2\)

\(\Rightarrow\frac{x+13}{3}+\frac{x+13}{4}=\frac{x+13}{5}+\frac{x+13}{6}\)

\(\Rightarrow\frac{x+13}{3}+\frac{x+13}{4}-\frac{x+13}{5}-\frac{x+13}{6}=0\)

\(\Rightarrow\left(x+13\right)\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)

Vì \(\left(\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}\right)\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>0\)

\(\Rightarrow x+13=0\Leftrightarrow x=-13\)

\(\frac{x+m}{n+p}+\frac{x+n}{p+m}+\frac{x+p}{n+m}+3=0\)

\(\Rightarrow\frac{x+m}{n+p}+1+\frac{x+n}{p+m}+1+\frac{x+p}{n+m}+1=0\)

\(\Rightarrow\frac{x+m+n+p}{n+p}+\frac{x+m+n+p}{p+m}+\frac{x+m+n+p}{n+m}=0\)

\(\Rightarrow\left(x+m+n+p\right)\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{n+m}\right)=0\)

Vì m,n,p là số dương nên \(\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{n+m}\right)>0\)

\(\Rightarrow x+m+n+p=0\Rightarrow x=-\left(m+n+p\right)\)

Khách vãng lai đã xóa
Kiệt Nguyễn
6 tháng 2 2020 lúc 13:10

\(\frac{5x+\frac{3x-4}{5}}{15}=\frac{\frac{3-x}{15}+7x}{5}+1-x\)

\(\Rightarrow\frac{\frac{25x+3x-4}{5}}{15}=\frac{\frac{3-x+105x}{15}}{5}+1-x\)

\(\Rightarrow\frac{\frac{28x-4}{5}}{15}=\frac{\frac{3+104x}{15}}{5}+1-x\)

\(\Rightarrow\frac{28x-4}{75}=\frac{3+104x}{75}+1-x\)

\(\Rightarrow\frac{28x-4}{75}=\frac{3+104x+75-75x}{75}\)

\(\Rightarrow\frac{28x-4}{75}=\frac{78+29x}{75}\)

\(\Rightarrow28x-4=78+29x\)

\(\Rightarrow x=-82\)

Khách vãng lai đã xóa
Đỗ Kiến Trương
Xem chi tiết
Fudo
26 tháng 2 2020 lúc 10:55

                                                  Bài giải

\(\frac{n}{5}< \frac{4}{n}\text{ }\Rightarrow\text{ }n^2< 4\cdot5\text{ }\Rightarrow\text{ }n^2< 20\)

\(\frac{4}{n}< \frac{n}{3}\text{ }\Rightarrow\text{ }n^2>3\cdot\text{ }4\text{ }\Rightarrow\text{ }n^2>12\)

\(\text{ }\Rightarrow\text{ }12\text{ }< n^2< 20\text{ }\Rightarrow\text{ }n^2=16\text{ }\Rightarrow\text{ }n=4\)

Khách vãng lai đã xóa
Lê Thị Nhung
26 tháng 2 2020 lúc 10:55

Ta có n/5<4/n suy ra n2<20 (1)

4/n<n/3 suy ra 12<n2   (2)

Từ (1) và (2) suy ra 12<n2  <20   (3)

Mà n là số tự nhiên khác 0  (4)

từ (3) và (4) suy ra n=4

Khách vãng lai đã xóa
Phạm Văn Tài
Xem chi tiết
Tran Le Khanh Linh
10 tháng 3 2020 lúc 16:31

Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)

\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)

Khách vãng lai đã xóa
anh thy
Xem chi tiết