Chứng minh rằng nếu a và b nguyên tố cùng nhau thì UCLN của 11a+2b và 18a+5d bằng 1 hoặc 19
Cho hai số nguyên tố cùng nhau a và b. Chứng minh rằng hai số 11a + 2b và 18a + 5b thì hoặc nguyên tố cùng nhau hoặc có một ước chung là 19
chứng minh rằng nếu a và b nguyên tố cùng nhau thì ƯCLN(11a+2b);(18a+5b)=1 hoăc 19
cho 2 số nguyên tó cùng nhau a và b chứng minh rằng hai số 11a +2b và 18a +5b thì nguyên tố cùng nhau hoặc có 1 ước là 19
Cho hai số nguyên tố cùng nhau a và b .
Chứng minh rằng hai số 11a+2b và 18a +5b thì nguyên tố cùng nhau hoặc có một ước chung là 19 .
Gọi d là ƯCLN của 11a +2b và 18a +5b
=> 11a +2b chia hết cho d và 18a +5b chia hết cho d
=> 18.(11a + 2b) chia hết cho d và 11(18a + 5b) chia hết cho d
=> 11(18a + 5b) - 18.(11a + 2b) chia hết cho d
=> 19 b chia hết cho d => 19 chia hết cho d hoặc b chia hết cho d (1)
=> d là ước của 19 hoặc d là ước của b
Tương tự ta cũng có 5.(11a + 2b) chia hết cho d và 2(18a + 5b) chia hết cho d
=> 5.(11a + 2b) - 2(18a + 5b) chia hết cho d
=> 19a chia hết cho d => 19 chia hết cho d hoặc a chia hết cho d => d là ước của 19 hoặc d là ước của a(2)
Từ (1) và (2) suy ra d là ước của 19 hoặc d là ước chung của a và b => d = 19 hoặc d = 1
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
Đặt A = 18a + 5b
B =11a + 2b
gọi d = UCLN( A;B)
11A - 18B = 11 (18a+5b) - 18 ( 11a +2b) = 11.18a + 55 b - 18.11a - 36b = 19b chia hết cho d
=> d thuộc {1 ; 19 ; b ; 19b}
Vì (A;B) =1 => d khác b ; 19b
=> d thuộc {1;19}
Cho hai số nguyên tố cùng nhau a và b. Chứng tỏ rằng hai số 11a + 2b hoặc 18a + 5b nguyên tố cùng nhau hoặc có một ước chung là 19
Cho hai số nguyên tố cùng nhau a và b. Chứng tỏ rằng hai số 11a + 2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có một ước chung là 19
Gọi d = ƯCLN(11a+2b,18a+5b) => 11 a + 2 b ⋮ d 18 a + 5 b ⋮ d
=> [11(18a+5b) – 18(11a+2b)] ⋮ d => 19b ⋮ d và [5(11a+2b) – 2(18a+5b)] ⋮ d => 19a ⋮ d
Mà a và b là hai số nguyên tố cùng nhau nên 19 ⋮ d => d ∈ {1;19}
Vậy d = 1 hoặc d = 19, tương ứng với hai số 11a+2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có một ước chung là 19
Gọi d = ƯCLN(11a+2b,18a+5b) => 11 a + 2 b ⋮ d 18 a + 5 b ⋮ d
=> [11(18a+5b) – 18(11a+2b)] ⋮ d => 19b ⋮ d và [5(11a+2b) – 2(18a+5b)] ⋮ d => 19a ⋮ d
Mà a và b là hai số nguyên tố cùng nhau nên 19 ⋮ d => d ∈ {1;19}
Vậy d = 1 hoặc d = 19, tương ứng với hai số 11a+2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có một ước chung19
Chứng minh rằng 2 số 11a + 2b và 18a + 5b hoặc 2 số nguyên tố cùng nhau hoặc có 1 ước chung là 19
Chứng minh rằng 2 số 11a + 2b và 18a + 5b hoặc 2 số nguyên tố cùng nhau hoặc có 1 ước chung là 19
Gọi d là ƯCLN của 11a+2b và 18a+5b.
=> 11a+2b chia hết cho d; 18a+5b chia hết cho d.
=> 11(18a+5b) - 18(11a+2b) chia hết cho d.
=> (198a + 55b) - (198a + 36b) chia hết cho d.
=> 19b chia hết cho d.
=> 19 chia hết cho d.
=> d thuộc Ư(19)=[1;19]
Suy ra d là 1 hoặc 19.
Hay ƯC của 11a+2b và 18a+5b là 19.
Vậy 11a+ 2b và 18a+5b có một ước chung là 19.
Chứng minh rằng 2 số 11a + 2b và 18a + 5b hoặc 2 số nguyên tố cùng nhau hoặc có 1 ước chung là 19