Tìm GTNN của \(S=x^6+y^6\) biết \(x^2+y^2=1\)
Tìm GTNN của S= \(\sqrt{x-2}+\sqrt{y-3}\)biết x+y=6
ĐKXĐ : \(x\ge2;y\ge3\)
\(\Rightarrow S=\sqrt{x-2}+\sqrt{y-3}\ge1\)
Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=2;y=4\\y=3;x=3\end{cases}}\)
Tìm GTNN của \(S=\sqrt{x-2}+\sqrt{y-3}\)
biết x+y=6
\(S=\sqrt{x-2}+\sqrt{y-3}\)
\(\Rightarrow S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\)
\(\Rightarrow S^2=x-2+2\sqrt{\left(x-2\right)\left(y-3\right)}+y-3\)
\(\Rightarrow S^2=x+y-5+2\sqrt{\left(x-2\right)\left(y-3\right)}\)
\(\Rightarrow S^2=1+2\sqrt{\left(x-2\right)\left(y-3\right)}\)
Vì \(2\sqrt{\left(x-2\right)\left(y-3\right)}\ge0\)
\(\Rightarrow1+2\sqrt{\left(x-2\right)\left(y-3\right)}\ge1\)
\(\Rightarrow S^2\ge1\Leftrightarrow\orbr{\begin{cases}S\ge1\left(tm\right)\\S\le-1\left(ktm\right)\end{cases}}\)
\(\Rightarrow S_{min}=1\Leftrightarrow2\sqrt{\left(x-2\right)\left(y-3\right)}=0\)
TH1 : \(x-2=0\Leftrightarrow x=2\Rightarrow y=6-2=4\)
Th2 : \(y-3=0\Rightarrow y=3\Rightarrow x=6-3=3\)
Vậy \(S_{min}=1\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)hoặc \(x=y=3\)
Áp dụng bđt Bu-nhi-a-cốp-xki ta có
\(S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\le\left(1+1\right)\left(x+y-5\right)=2\left(6-5\right)=2\)(vì \(x+y=6\) )
\(\Rightarrow S^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le S\le\sqrt{2}\)
\(\Rightarrow minS=-\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{\sqrt{x-2}}{1}=\frac{\sqrt{y-3}}{1}\\x+y=6\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2,5\\y=3,5\end{cases}}\)
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2
1.cho x,y,z thuộc R thỏa mãn x+y+z+xy+xz+yz=6. Tìm GTNN của : x^2+y^2+z^2
2. cho x,y>0 thỏa mãn x+1/y<=1. tìm GTNN: A=x/y+y/x
Cho x,y thỏa x2 + y2 = 1.Tìm GTLN, GTNN của A = x 6 + y6
Lời giải:
Áp dụng BĐT AM-GM:
$x^6+\frac{1}{8}+\frac{1}{8}\geq 3\sqrt[3]{\frac{x^6}{64}}=\frac{3}{4}x^2$
$y^6+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}y^2$
Cộng 2 BĐT trên và thu gọn theo vế thì:
$A+\frac{1}{2}\geq \frac{3}{4}(x^2+y^2)$
$\Leftrightarrow A+\frac{1}{2}\geq \frac{3}{4}$
$\Leftrightarrow A\geq \frac{1}{4}$
--------------------
Lại có:
$x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x^4\leq 1; y^4\leq 1$
Khi đó:
$x^6\leq x^2; y^6\leq y^2$
$\Rightarrow x^6+y^6\leq x^2+y^2$
$\Rightarrow A\leq 1$
Vậy $A_{\min}=\frac{1}{4}; A_{\max}=1$
cho x2+y2=1
Tìm GTLN ,GTNN của x6+y6
Tìm GTNN của: M=|x-2|+(y+1)2 - 6 với mọi x; y
Tìm GTLN - GTNN
1 . \(y=S\times\left(1-\frac{S^2-1}{2}\right)\)
2. \(y=\sin^4x+\cos^4x\)
3.\(y=\sin^6+\cos^6\)
4.\(y=\frac{\cos x+2\sin x+3}{2\cos x-\sin x+4}\)
Biết \(x,y,z\) là các số thực dương. Tìm GTNN \(M=\dfrac{x^{14}-x^6+3}{x^2y^2+zx+zy}+\dfrac{y^{14}-y^6+3}{y^2z^2+xy+xz}+\dfrac{z^{14}-z^6+3}{z^2x^2+yz+yx}\)