Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cristiano Ronaldo
Xem chi tiết
Trương Thái Hậu
Xem chi tiết
phanthaonon
11 tháng 8 2016 lúc 13:47

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

phanthaonon
11 tháng 8 2016 lúc 14:16

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

Kệ Chúng m T Lợi
2 tháng 9 2018 lúc 14:34

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Trần Phương Thảo
Xem chi tiết
Nguyễn Thế Khang
Xem chi tiết
an
27 tháng 1 2016 lúc 19:04

\(\frac{y+z+2}{x}=\frac{x+z+3}{y}=\frac{x+y-5}{z}=\frac{1}{x+y+z}\)

=>\(\frac{\left(x+y+z\right)2}{x+y+z}=\frac{1}{x+y+z}\)

=> x+y+z=1/2

=> y+z=2x-2

=>    x+z=2y-3

=>x+y=2x+5

=> 1/2-x=2x-3

=> x=5/6

=>1/2-y=2y-3

=> y=7/6

=> z=1/2-(7/6+5/6)=-3/2

Nguyênx Trường Giang
27 tháng 1 2016 lúc 18:33

chtt

trang chelsea
27 tháng 1 2016 lúc 18:38

ok con de

Xem chi tiết
Đào Thị Thảo Nhi
9 tháng 3 2020 lúc 10:15

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)

\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)

\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)

2=\(\frac{1}{x+y+z}\)(1)

Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)

Từ(1)=> x+y+1=2x(3)

             x+z+2=2y(4)

            z+y-3=2z(5)

Thay(2) vào (4) ta được: 0,5-y+2=2y

                              =>    2,5=3y

                             => y=\(\frac{5}{6}\)

Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x

                                            \(\frac{11}{6}\)=x

Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:

\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5

z=\(\frac{-13}{6}\)

      Vậy ............

chúc bn học tốt.

k cho mik nha                                    

Khách vãng lai đã xóa
Cristiano Ronaldo
Xem chi tiết
Đoàn Khánh Linh
4 tháng 3 2018 lúc 9:36

Bạn tra trên mạng là có ngay.

Nguyễn Hữu Cường
Xem chi tiết
Trần Hải An
5 tháng 8 2016 lúc 10:20

\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)-2-3+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\Rightarrow z+y+z=\frac{1}{2}\)Ta có:

\(\frac{x}{y+z+1}=\frac{1}{2}\)

\(\Rightarrow2x=y+z+1\)

\(\Rightarrow y+z=2x-1\)

\(\Rightarrow x+\left(2x-1\right)=\frac{1}{2}\)

\(\Rightarrow x+2x-1=\frac{1}{2}\)

\(\Rightarrow3x-1=\frac{1}{2}\)

\(\Rightarrow3x=\frac{1}{2}+1\)

\(\Rightarrow3x=\frac{3}{2}\)

\(\Rightarrow x=\frac{3}{2}:3\)

\(\Rightarrow x=\frac{1}{2}\)

y ;z bạn làm tương tự

Trần Hải An
5 tháng 8 2016 lúc 10:27

- Mình nhầm chỗ \(\frac{x}{y+z+1}\)tí sữa thành \(\frac{x}{y+z+2}\)nhá D

Nguyễn Hữu Cường
8 tháng 8 2016 lúc 17:56

làm hết đi thì tôi mới k đúng nha làm hết đó

đào văn thái
Xem chi tiết
Uzumaki Naruto
21 tháng 8 2016 lúc 8:55

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow y+z=\frac{1}{2}-x;x+z=\frac{1}{2}-y;z+y=\frac{1}{2}-x\)

THAY VÀO BIỂU THỨC TA CÓ:

\(\frac{\frac{1}{2}-x+1}{x}=2\Rightarrow\frac{3}{2}-x=2x\Rightarrow x=\frac{1}{2}\)

\(\frac{\frac{1}{2}-y+2}{y}=2\Rightarrow\frac{5}{2}-y=2y\Rightarrow y=\frac{5}{6}\)

\(\frac{\frac{1}{2}-z-3}{z}=2\Rightarrow\frac{-5}{2}-z=2z\Rightarrow z=-\frac{5}{6}\)

Nguyễn Huệ Lam
21 tháng 8 2016 lúc 9:04

\(\frac{y+z+1}{x}+\frac{x+z+2}{y}+\frac{x+y-3}{z}=\frac{y+x+1+x+z+2+x+y-3}{x+y+x}=\frac{2x+2y+2z}{x+y+z}=2.\)

\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}=0,5\)

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\)\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=0,5+1\)

\(\Leftrightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=1,5\)

\(\Leftrightarrow\frac{0,5+1}{x}=\frac{0,5+2}{y}=\frac{0,5-3}{z}=1,5\)

\(\Rightarrow\hept{\begin{cases}\frac{1,5}{x}=1,5\\\frac{2,5}{y}=1,5\\\frac{-2,5}{z}=1,5\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1,6\\z=-1,6\end{cases}}}\)

ngonhuminh
29 tháng 11 2016 lúc 22:47

sai het  roi thi nhau copy k

no no no
Xem chi tiết
Lê Anh Thư
18 tháng 10 2016 lúc 17:48

Áp dụng tính chất của dãy tỉ số bằng nhau sau đây:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{\left(y+z+1\right)}{ }+\frac{\left(x+z+2\right)}{x+y+z}+\frac{\left(x+y-3\right)}{ }=2vi\left(x+y+z\ne0\right).Nênx+y+z=0,5\)

Thay kết quả này vào đề bài, ta được các phép tính như sau:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z+3}{z}=2\)
 

Tức: \(\frac{1,5-x}{x}=\frac{2,5-y+2}{y}=\frac{0,5-2}{z}=2\)

Vậy: \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{-5}{6}\)

Chúc bạn học tốt nha!