Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chibi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 8 2017 lúc 13:03

b)

Gọi số quân là n

n=3x+a => 70n=219x+70a

n=5y+b => 21n=105y+21b

n=7z+c => 15n=105z+15c

Do đó: 106n = 70a +21b + 15c ± 105t (t ∈N)

Vậy n = 70a + 21b + 10c ± 105h (h ∈N)

Angel And Demons
Xem chi tiết
Angel And Demons
12 tháng 4 2016 lúc 22:23

Ý bài nầy là " Tôn Tử " biết chừng chừng số binh của mình. Muốn biết số binh chính xác, thì : 
- Làm dấu hiệu thứ nhất -ph ất một lần cây cờ - thì cứ 3 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1 hoặc 2 người ; số nầy sẽ nhân với 70. 
- Làm dấu hiệu thứ hai, thì cứ 5 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3 hoặc 4 người ; số nầy sẽ nhân cho 21. 
- Làm dấu hiệu thứ ba, thì cứ 7 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3, 4, 5 hoặc 6 người ; số nầy sẽ nhân cho 15. 
Cọng tất cả 3 số vừa được nhân ở trên, và nếu cần thì cọng thêm, hoặc trừ ra 105, để được số binh chính xác.).

Ví dụ : Số binh là 437, và " Tôn Tử " biết chừng chừng là khoảng 400.

- Nếu sắp 3 người thành một nhóm, thì lẻ ra 2 người, 
- Nếu sắp 5 người thành một nhóm, thì lẻ ra 2 người, 
- Nếu sắp 7 người thành một nhóm, thì lẻ ra 3 người. 
Và : (2 x 70) + (2 x 21) + (3 x 15) + 105 + 105 = (140 + 42 + 45) + 210 = 227 + 210 = 437.

Cái hay ở đây là chỉ dùng có 3 động tác đơn sơ và chỉ trong vài ba phút mà " Tôn Tử " đã biết được số binh chính xác của mình.

Chuyện bài toán trên là Phép Chia Euclide (1) về Số Học trong Tập Hợp Số Nguyên Z. Vậy ta có thể thay những số 3, 5, 7; 70, 21, 15; 105, trên, bằng những nhóm số khác như 2, 3, 5; 15, 10, 6; 30; hay 3, 5, 11; 55, 66, 45; 165 ; vân vân, nhưng theo tôi nhóm số 3, 5, 7; 70, 21, 15; 105 trên vẫn đơn giản hơn nhiều.

Ví dụ với nhóm số 2, 3, 5; 15, 10, 6; 30 :

Cũng lấy số binh trên 437. 
- Nếu xếp 2 người thành một nhóm, thì lẻ ra 1 người, 
- Nếu xếp 3 người thành một nhóm, thì lẻ ra 2 người, 
- Nếu xếp 5 người thành một nhóm, thì lẻ ra 2 người. 
Và (1 x 15) + (2 x 10) + (2 x 6) + (13 x 30) = (15 + 20 + 12) + 390 = 47 + 390 = 437.

Ở đây 47 phải cọng thêm 13 lần 30, (13 x 30 = 390).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 1 2019 lúc 14:16

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2019 lúc 5:16

Đề kiểm tra Toán 6 | Đề thi Toán 6

Do đó: 106n = 70a +21b + 15c ± 105t (t ∈N)

Vậy n = 70a + 21b + 10c ± 105h (h ∈N)

Lê Nho Khoa
Xem chi tiết
lê thị thanh
15 tháng 3 2016 lúc 18:07

1 cau tra loi that dai dong

Lê Nho Khoa
15 tháng 3 2016 lúc 17:49

Tôi để hai chữ " Tôn Tử " trong dấu ngoặc kép, vì tôi không có tài liệu nào trong tay để quyết đoán bài thơ " Điểm Binh " trên là của Tôn Tử.

(Ý bài nầy là " Tôn Tử " biết chừng chừng số binh của mình. Muốn biết số binh chính xác, thì : 
- Làm dấu hiệu thứ nhất - như phất một lần cây cờ - thì cứ 3 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1 hoặc 2 người ; số nầy sẽ nhân với 70. 
- Làm dấu hiệu thứ hai, thì cứ 5 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3 hoặc 4 người ; số nầy sẽ nhân cho 21. 
- Làm dấu hiệu thứ ba, thì cứ 7 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3, 4, 5 hoặc 6 người ; số nầy sẽ nhân cho 15. 
Cọng tất cả 3 số vừa được nhân ở trên, và nếu cần thì cọng thêm, hoặc trừ ra 105, để được số binh chính xác.).

Ví dụ : Số binh là 437, và " Tôn Tử " biết chừng chừng là khoảng 400.

- Nếu sắp 3 người thành một nhóm, thì lẻ ra 2 người, 
- Nếu sắp 5 người thành một nhóm, thì lẻ ra 2 người, 
- Nếu sắp 7 người thành một nhóm, thì lẻ ra 3 người. 
Và : (2 x 70) + (2 x 21) + (3 x 15) + 105 + 105 = (140 + 42 + 45) + 210 = 227 + 210 = 437.

Cái hay ở đây là chỉ dùng có 3 động tác đơn sơ và chỉ trong vài ba phút mà " Tôn Tử " đã biết được số binh chính xác của mình.

Chuyện bài toán trên là Phép Chia Euclide (1) về Số Học trong Tập Hợp Số Nguyên Z. Vậy ta có thể thay những số 3, 5, 7; 70, 21, 15; 105, trên, bằng những nhóm số khác như 2, 3, 5; 15, 10, 6; 30; hay 3, 5, 11; 55, 66, 45; 165 ; vân vân, nhưng theo tôi nhóm số 3, 5, 7; 70, 21, 15; 105 trên vẫn đơn giản hơn nhiều.

Ví dụ với nhóm số 2, 3, 5; 15, 10, 6; 30 :

Cũng lấy số binh trên 437. 
- Nếu xếp 2 người thành một nhóm, thì lẻ ra 1 người, 
- Nếu xếp 3 người thành một nhóm, thì lẻ ra 2 người, 
- Nếu xếp 5 người thành một nhóm, thì lẻ ra 2 người. 
Và (1 x 15) + (2 x 10) + (2 x 6) + (13 x 30) = (15 + 20 + 12) + 390 = 47 + 390 = 437.

Ở đây 47 phải cọng thêm 13 lần 30, (13 x 30 = 390).

Lê Nho Khoa
15 tháng 3 2016 lúc 17:49

Tôi để hai chữ " Tôn Tử " trong dấu ngoặc kép, vì tôi không có tài liệu nào trong tay để quyết đoán bài thơ " Điểm Binh " trên là của Tôn Tử.

(Ý bài nầy là " Tôn Tử " biết chừng chừng số binh của mình. Muốn biết số binh chính xác, thì : 
- Làm dấu hiệu thứ nhất - như phất một lần cây cờ - thì cứ 3 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1 hoặc 2 người ; số nầy sẽ nhân với 70. 
- Làm dấu hiệu thứ hai, thì cứ 5 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3 hoặc 4 người ; số nầy sẽ nhân cho 21. 
- Làm dấu hiệu thứ ba, thì cứ 7 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3, 4, 5 hoặc 6 người ; số nầy sẽ nhân cho 15. 
Cọng tất cả 3 số vừa được nhân ở trên, và nếu cần thì cọng thêm, hoặc trừ ra 105, để được số binh chính xác.).

Ví dụ : Số binh là 437, và " Tôn Tử " biết chừng chừng là khoảng 400.

- Nếu sắp 3 người thành một nhóm, thì lẻ ra 2 người, 
- Nếu sắp 5 người thành một nhóm, thì lẻ ra 2 người, 
- Nếu sắp 7 người thành một nhóm, thì lẻ ra 3 người. 
Và : (2 x 70) + (2 x 21) + (3 x 15) + 105 + 105 = (140 + 42 + 45) + 210 = 227 + 210 = 437.

Cái hay ở đây là chỉ dùng có 3 động tác đơn sơ và chỉ trong vài ba phút mà " Tôn Tử " đã biết được số binh chính xác của mình.

Chuyện bài toán trên là Phép Chia Euclide (1) về Số Học trong Tập Hợp Số Nguyên Z. Vậy ta có thể thay những số 3, 5, 7; 70, 21, 15; 105, trên, bằng những nhóm số khác như 2, 3, 5; 15, 10, 6; 30; hay 3, 5, 11; 55, 66, 45; 165 ; vân vân, nhưng theo tôi nhóm số 3, 5, 7; 70, 21, 15; 105 trên vẫn đơn giản hơn nhiều.

Ví dụ với nhóm số 2, 3, 5; 15, 10, 6; 30 :

Cũng lấy số binh trên 437. 
- Nếu xếp 2 người thành một nhóm, thì lẻ ra 1 người, 
- Nếu xếp 3 người thành một nhóm, thì lẻ ra 2 người, 
- Nếu xếp 5 người thành một nhóm, thì lẻ ra 2 người. 
Và (1 x 15) + (2 x 10) + (2 x 6) + (13 x 30) = (15 + 20 + 12) + 390 = 47 + 390 = 437.

Ở đây 47 phải cọng thêm 13 lần 30, (13 x 30 = 390).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 1 2019 lúc 3:51

Sáu trăm hai mươi lăm: 625

Một trăm mười sáu: 116

Bốn trăm năm mươi: 450

Tám trăm ba mươi tư: 834

Ba trăm linh bảy: 307

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 5 2019 lúc 14:17
Viết số Đọc số
21 305 687 Hai mươi mốt triệu ba trăm linh năm nghìn sáu trăm tám mươi bảy
5 978 600 Năm triệu chín trăm bảy mươi tám nghìn sáu trăm đồng
500 308 000 Năm trăm triệu ba trăm linh tám nghìn
1 872 000 000 Một tỉ tám trăm bảy mươi hai triệu
Nguyễn Thị Cẩm Ánh
29 tháng 11 2021 lúc 8:27
Dễ mà ❤️❤️❤️❤️ chuk bạn học giỏi
Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 2 2018 lúc 7:20

613000000

131405000

512326103

86004702

800004720