Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đăng Đặng Hồng
Xem chi tiết
Dang Thuy Trang
Xem chi tiết
Trần Thu Hà
Xem chi tiết
ha thi huong quynh
Xem chi tiết
Nguyễn Nhật Minh
14 tháng 12 2015 lúc 20:23

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)

\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\)

\(\Leftrightarrow a^2+b^2+c^2+2.0=1\)

\(\Leftrightarrow a^2+b^2+c^2=1\)

tran thi thu an
Xem chi tiết
Trần Thị Hà Giang
2 tháng 7 2018 lúc 20:08

2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)

Dấu "=" xảy ra <=> a = b = c

ngo van khanh
Xem chi tiết
Thắng Nguyễn
13 tháng 6 2016 lúc 10:59

Ta biến đổi 1 tí nhé

\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)

\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)

\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)

\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)

Cộng vế với vế của (1), (2), (3) suy ra 

\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

\(\Leftrightarrow Dpcm\)

Vũ Anh Quân
Xem chi tiết
Ánh Right
1 tháng 9 2017 lúc 15:09

thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :

a^3+b^3+c^3-3abc=0

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0

<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

luôn đúng do a+b+c=0

Hồ Hồng Ngọc
Xem chi tiết
Phước Nguyễn
16 tháng 12 2015 lúc 9:41

Đề: Cho  \(a+b+c=1\) và  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)  .  Chứng minh:  \(a^2+b^2+c^2=1\)

                                                                 -----------------------------------------

Từ   \(a+b+c=1\)

\(\Rightarrow\)  \(\left(a+b+c\right)^2=1\)

\(\Leftrightarrow\)  \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)  \(\left(1\right)\)

Mặt khác, ta lại có:   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)  \(\Leftrightarrow\)  \(\frac{ab+bc+ca}{abc}=0\)  \(\Leftrightarrow\)  \(ab+bc+ca=0\)  \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\), suy ra  \(a^2+b^2+c^2=1\)   \(\left(đpcm\right)\)

Phú Duy
Xem chi tiết