Bài 1 : Tính BCNN của \(\frac{16}{21}\) và \(\frac{56}{27}\)( Giải rõ => tick )
Tính BCNN\(\left(\frac{16}{21},\frac{56}{27}\right)\)(Trình bày rõ => tick )
Tính bằng cách thuận tiện:
a)(56 x 27 + 56 x 35) : 62
b)\(\frac{0,18x1230+0,9x4567x2+3x5310x0,6}{1+4+7+10+...+52+55-514}\)
c)\(\frac{3}{5}:\frac{7}{9}x\frac{7:9}{9:5}+1999\)
(Các bạn nhớ ghi rõ bài giải nhé)
a) \(\left(56\times27+56\times35\right)\div62=56\times\left(27+35\right)\div62=56\times62\div62=56\)
b) \(\frac{0,18\times1230+0,9\times4567\times2+3\times5310\times6}{1+4+7+10+....+52+55-514}\)
\(=\frac{0,18\times1230+\left(0,9\times2\right)\times4567+\left(3\times6\right)\times5310}{1+4+5+.....+52+55-514}\)
\(=\frac{0,18\times1230+0,18\times4567+0,18\times5310}{1+4+7+...+52+55-514}\)
\(=\frac{0,18\times\left(1230+4567+5310\right)}{\left(55+1\right)\times55\div2-514}\)
\(=\frac{0,18\times11107}{971}=\frac{1999,26}{971}\)
mình ra cũng giống bạn Forever _ Alone nhé!!!Chẳng qua mình không biết viết phân số
chư học mà
Bài 1 : Tính nhanh : \(\frac{\frac{17}{4}-\frac{17}{16}-\frac{17}{64}+\frac{17}{256}}{13-\frac{13}{4}-\frac{13}{16}-\frac{13}{64}}\)( Trình bày rõ => tick )
khó quá tui ko biết lớp 7 à
Tính : \(\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.93}-\frac{1}{5.3}-\frac{1}{3.1}=\)... (P/S tối giản)
CTV giỏi vô đây giải bài này hộ tui cái, cả thầy và cô nữa. Ai giải được và cách giải rõ ràng, hợp lí sẽ được tick.
Tôi thấy bài này nó cứ sai sai
Ở chỗ \(\frac{1}{99.97}-\frac{1}{97.95}\)í
\(\frac{1}{97.95}>\frac{1}{99.97}\)mà ông Thám Tử THCS Nguyễn Hiếu CTV
violympic cho sai đề :
Đề đúng là tính : \(A=\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.53}-....-\frac{1}{5.3}-\frac{1}{3.1}\)
Làm theo đề đúng !! ok
Ta có : \(A=\frac{1}{99.97}-\left(\frac{1}{97.95}+\frac{1}{95.53}+....+\frac{1}{5.3}+\frac{1}{3.1}\right)\)
\(=\frac{1}{99.97}-\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{95}-\frac{1}{97}\right)\)
\(=\frac{1}{99.97}-\frac{1}{2}\left(1-\frac{1}{97}\right)=\frac{1}{99.97}-\frac{48}{97}=-\frac{4751}{9603}\)
Ai mà biết, tui thấy violympic nó ghi như vậy
Bài 1 : Tính A = \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+...+\frac{1}{2999}}\)(Giải rõ => tick )
Mini game đêy
Tính: \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}.\)
\(A=?\)
* Giải nhất: 3 tick ~ (9đ) _ 1 giải
* Giải nhì: 2 tick ( 6đ) _ 2 giải
* Giải ba: 1 tick (3đ) _ 3 giải
__ Theo thứ tự + chất lượng bài giải a ~ __
A=1/1.2+1/12.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
A=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
A=1/1-1/8
A=7/8
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=1-\frac{1}{8}\)
\(A=\frac{7}{8}\)
Tính:
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(=\frac{1}{2}+\frac{16}{21}+\frac{27}{13}-\frac{14}{13}+\frac{5}{21}\)
\(=\left(\frac{16}{21}+\frac{5}{21}\right)+\left(\frac{27}{13}-\frac{14}{13}\right)+\frac{1}{2}\)
\(=1+1+\frac{1}{2}\)
\(=\frac{5}{2}\)
#)Giải :
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(=\frac{1}{2}+\frac{16}{21}+\frac{27}{13}-\frac{14}{13}+\frac{5}{21}\)
\(=\frac{1}{2}+\left(\frac{16}{21}+\frac{5}{21}\right)+\left(\frac{27}{13}-\frac{14}{13}\right)\)
\(=\frac{1}{2}+1+1\)
\(=2\frac{1}{2}=\frac{5}{2}\)
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(=\frac{1}{2}+\frac{16}{21}+\frac{27}{13}-\frac{14}{13}+\frac{5}{21}\)
\(=\frac{1}{2}+\left(\frac{16}{21}+\frac{5}{21}\right)+\left(\frac{27}{13}-\frac{14}{13}\right)\)
\(=\frac{1}{2}+1+1\)
\(=1+2+2\)
\(=5\)
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
ai làm nhanh đúng tick ( nhớ ghi rõ lời giải nha)
Gọi \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(\Rightarrow2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
=> 2A - A = \(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}\)
\(\Rightarrow A=1+\frac{1}{64}=\frac{65}{64}\)
\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)
\(=\frac{2}{4}+\frac{8}{16}+\frac{32}{64}\)
\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=\frac{1+1+1}{2}=\frac{3}{2}\)
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(=\frac{32}{64}-\frac{16}{64}+\frac{8}{64}-\frac{4}{64}+\frac{2}{64}-\frac{1}{64}\)
\(=\frac{32-16+8-4+2-1}{64}\)
\(\frac{21}{64}\)
Tính nhanh: \(\left(\frac{1}{11\times16}\right)+\left(\frac{1}{16\times21}\right)+\left(\frac{1}{21\times26}\right)+...+\left(\frac{1}{56\times61}\right)+\left(\frac{1}{61\times66}\right)\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}\)
\(=\frac{1}{66}\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{5}{11\times16}+\frac{5}{16\times21}+\frac{5}{21\times26}+...+\frac{5}{56\times61}+\frac{5}{61\times66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}=\frac{1}{66}\)
\(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)
\(=\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}.\frac{5}{66}\)
\(=\frac{1}{66}\)