tim gia tri lớn nhất của biểu thức:
P= \(\frac{x}{\left(x+2003\right)^2}\) voi x>0
tim gia tri m· cua C=\(\frac{x+2}{\left|x\right|}\)voi x la so nguyen
\(M=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)N=\frac{\sqrt{x}+1}{\sqrt{x}}\) voi x>0 va x khac 1
a) tim gia tri bieu thuc cua N khi x = 25
b) rut gon S = M.N
c) tim m de S<-1
a) Với x = 25 thì \(N=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)
b) Ta có \(M=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\)
\(M=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\)
Suy ra \(S=M.N=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
tim gia tri lớn nhất của biểu thức:
\(\frac{2\sqrt{x}}{1+x}\)
ta thấy 1+x>= 2 căn x
=> 2 căn x/1+x bé hơn hoặc = 1
hok tốt
dấu = xảy ra khi x=-1
ĐKXĐ: x > 0
Áp dụng bđt Cô-si có \(x+1\ge2\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{1+x}\le1\)
Dấu "=" tại x = 1 (T/m ĐKXĐ)
1) Cho bieu thuc: \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(x\ge0,x\ne16\right)\)
a) Cho bieu thuc A= \(\frac{\sqrt{x}+4}{\sqrt{x}+2}\) ; voi cac cua bieu thuc A va B da cho, hay tim cac gia tri cua x nguyen de gia tri cua bieu thuc B(A;-1) la so nguyen
voi gia tri nao cua bien thi bieu thuc sau co gia tri nho nhat,tim gia tri do
\(\left(x-2013\right)^2+\left(y-2014\right)^2-2015\)
Cho bieu thuc \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2016}{x}\)
a, Voi gia tri nguyen nao cua x thi bieu thuc A co gia tri nguyen
b,Voi gia tri nao cua x thi A co gia tri duong
tim gia tri nho nhat cua bieu thuc
\(A=\frac{2015}{\left|x\right|-3}\) voi x nguyen
Cho ba số thực dương x;y;z thoả mãn
\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\)
Tìm giá trị lớn nhất nhỏ nhất của biểu thức:P=\(\frac{2x+z}{x+2z}\)
\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow9x^2+9y^2+9z^2-10y\left(x+z\right)-10zx\le0\)
\(\Leftrightarrow9\left(\frac{x}{z}\right)^2+9\left(\frac{y}{z}\right)^2+9-10.\frac{y}{z}\left(\frac{x}{z}+1\right)-10\frac{x}{z}\le0\)
Đặt \(\left(\frac{x}{z};\frac{y}{z}\right)=\left(a;b\right)>0\)
\(9b^2-10b\left(a+1\right)+9a^2-10a+9\le0\)
Để BPT đã cho có nghiệm
\(\Rightarrow\Delta'=25\left(a+1\right)^2-9\left(9a^2-10a+9\right)\ge0\)
\(\Leftrightarrow25a^2+50a+25-81a^2+90a-81\ge0\)
\(\Leftrightarrow-56a^2+140a-56\ge0\Rightarrow\frac{1}{2}\le a\le2\)
\(P=\frac{2a+1}{a+2}\Rightarrow\frac{4}{5}\le P\le\frac{5}{4}\)
\(\Rightarrow P_{min}=\frac{4}{5}\) khi \(a=\frac{1}{2}\) hay \(z=2x\); \(P_{max}=\frac{5}{4}\) khi \(x=2z\)
Áp dụng BĐT Bunhiakowski ta có:
\(\left(x+y+z\right)^2\le\left[\frac{5}{9}\left(x+z\right)^2+y^2\right]\left(\frac{9}{5}+1\right)\)
\(\Leftrightarrow5\left(x+y+z\right)^2\le14\left[\frac{5}{9}\left(x+z\right)^2+y^2\right]\)
\(\Rightarrow14\left(x^2+y^2+z^2\right)\le14\left[\frac{5}{9}\left(x+z\right)^2+y^2\right]\)
\(\Leftrightarrow2x^2-5xz+2z^2\le0\)
\(\Leftrightarrow\left(2x-z\right)\left(x-2z\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x\ge z;x\le2z\\2x\le z;x\ge2z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ge z\\2z\ge x\end{matrix}\right.\)
\(\Leftrightarrow\frac{1}{2}\le\frac{x}{z}\le2\).
Đặt \(\frac{x}{z}=o>0\).
Ta có: \(P=\frac{2t+1}{t+2}=2-\frac{3}{t+2}\).
Mặt khác \(\frac{1}{2}\le t\le2\) nên \(\frac{4}{5}\le P\le\frac{5}{4}\).
Vậy Min P = \(\frac{4}{5}\) khi x = 1; y = \(\frac{5}{3}\); z = 2.
Max P = \(\frac{5}{4}\) khi x = 2; y = \(\frac{5}{3}\); z = 1.
\(\frac{\text{\x\}}{186}=\left(1-\frac{303030}{313131}\right)+\left(\frac{616161}{626262}-1\right)+\left(\frac{929292}{939393}-1\right)\)
tim x nguyen
ma cai dau \x\ la gia tri tuyet doi
giai ra giup minh voi
xim may ban trnh bay chi tiet duoc khong
cam on rat nhieu