Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Huyền Linh
Xem chi tiết
Hoàng Đình Đại
4 tháng 5 2018 lúc 16:39

\(x-2014-\frac{2015}{2013}+x-2013-\frac{2015}{2014}+x-2014-\frac{2013}{2015}=3\)

\(\Rightarrow\left(x+x+x\right)+\left(-2014-2014\right)-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)

\(3x-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)

\(3x=3+2013+\frac{2015}{2013}+\frac{2015}{2014}+\frac{2013}{2015}\)

bạn ơi bài này số lớn quá bạn sử dungjmays tính rồi tự tính nhé

Dương Thị Huyền Linh
5 tháng 5 2018 lúc 15:32

Đáp án của bạn Hoàng Đình Đại sai rùi nhưng dù sao cx cảm ơn nhiều

Lê Hạnh Chi
Xem chi tiết
Lão Hạc 7A
17 tháng 4 2017 lúc 16:05

Min D = 2 <=> x= 2014

vungocchinh
17 tháng 12 2017 lúc 21:59
Minh dong y voi ket qua ban nay
Trịnh Hương Quỳnh
Xem chi tiết
Thắng Nguyễn
21 tháng 3 2017 lúc 23:40

Sửa đề: TÌm GTNN của biểu thức 

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có: 

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

\(\ge x-2013+0+2015-x=2\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x-2015\le0\\x-2014=0\\x-2013\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2015\\x=2014\\x\ge2013\end{cases}}\Rightarrow x=2014\)

Vậy với \(x=2014\) thì \(A_{Min}=2\)

Mai Hà Lan
Xem chi tiết
Đinh Tuấn Việt
4 tháng 6 2015 lúc 14:18

A = |2013 - x| + |2014 - x| có GTNN

<=> |2013 - x| có GTNN và |2014 - x| có GTNN

Mà |2013 - x| < |2014 - x| nên ...

Người lạnh lùng
Xem chi tiết
nguyễn quốc hoàn
5 tháng 12 2018 lúc 20:22

tìm tất cả các số nguyên thỏa mãn :x+y/x^2-xy+y^2=3/7

shitbo
5 tháng 12 2018 lúc 20:22

\(|x-2013|;|x-2014|;|x-2015|\ge0;A_{min}\Leftrightarrow|x-2013|;|x-2014|;|x-2015|đạtGTNN\)

Mặt khác: \(x-2013|;|x-2014|;|x-2015|\)sẽ ko đồng thời=0

mà: 2015-2014=1;2014-2013=1

còn các th khác 2015-2013=2; 2014-2013=1

nên: \(A_{min}\Leftrightarrow|x-2014|đạtGTNN\Leftrightarrow x=2014\)

Vậy: Amin=2<=> x=2014

Nguyệt
5 tháng 12 2018 lúc 20:54

shitbo bn làm sai rồi, bn có hiểu nhưng trình bày ko đúng 

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

ta có:\(\left|x-2013\right|+\left|x+2015\right|\)

\(=\left|x-2013\right|+\left|2015-x\right|\ge\left|x-2013+2015-x\right|=2\)

dấu = xảy ra khi \(\left(x-2013\right).\left(x-2015\right)\ge0\)(1)

\(\Rightarrow2013\le x\le2015\)

\(\left|x-2014\right|\ge0\)

dấu = xảy ra khi x=2014(2)

\(\Rightarrow A\ge2\)

dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra

=> \(\hept{\begin{cases}2013\le x\le2015\\x=2014\end{cases}\Rightarrow x=2014}\)

Vậy Min A=2 khi x=2014

Katori Bách
Xem chi tiết
Đinh Văn Dũng
11 tháng 3 2017 lúc 6:40

A=6 nhé

X=2016

Đinh Đức Hùng
11 tháng 3 2017 lúc 11:36

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|=\left|x-2014\right|+\left(\left|x-2013\right|+\left|2015-x\right|\right)\)

\(\Leftrightarrow A\ge\left|x-2014\right|+\left|x-2013+2015-x\right|=\left|x-2014\right|+2\ge2\)

Dấu "=" xảy ra <=> \(\left(x-2013\right)\left(2015-x\right)\ge0\) và \(\left|x-2014\right|=0\)

\(\Leftrightarrow2013\le x\le2015\) và \(x=2014\) (thỏa mãn)

Vậy \(A_{min}=2\) tại \(x=2014\)

Number one princess in t...
Xem chi tiết
✰Ťøρ ²⁷ Ťɾїệʉ Vâɳ ŇD✰
27 tháng 3 2020 lúc 20:20

Để A=|x-2013| + |x-2014| + |x-2015| có giá trị nhỏ nhất thì |x-2013| + |x-2014| + |x-2015 nhỏ nhất

=>|x-2013| + |x-2014| + |x-2015=0

Vậy A=0 là nhỏ nhất

Mk lm chưa đầy đủ còn nhiều thiếu sót bn thông cảm nha mk bận rồi

Khách vãng lai đã xóa
Nguyễn Văn Ngọc Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 8 2016 lúc 11:23

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left(\left|x-2011\right|+\left|2015-x\right|\right)+\left(\left|x-2012\right|+\left|2014-x\right|\right)+\left|x-2013\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu. Ta có : \(\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\)

\(\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\)

\(\left|x-2013\right|\ge0\)

\(\Rightarrow A\ge4+2+0=6\)

Dấu "=" xảy ra khi \(\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}\) \(\Leftrightarrow x=2013\)

Vậy A đạt giá trị nhỏ nhất bằng 6 tại x = 2013

Kẹo dẻo
10 tháng 8 2016 lúc 11:19

x=2013

Nguyen tuan cuong
Xem chi tiết
Lê Tài Bảo Châu
12 tháng 1 2020 lúc 23:52

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)

Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)

\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)

Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2011\le x\le2015\)

Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)

\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2012\le x\le2014\)

Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)

Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)

                      \(\Leftrightarrow x=2013\)

Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)

Hay \(A\ge6\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)

Vậy \(A_{min}=6\Leftrightarrow x=2013\)

Khách vãng lai đã xóa