Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Lê Vy
Xem chi tiết
Phạm Thái Hà
8 tháng 12 2020 lúc 15:07

cho hàm số f(x) thỏa mãn 2f(x) - x. f(-x) = x+10. tính f(2)

Khách vãng lai đã xóa
Nguyễn Hoàng trung
Xem chi tiết
Nguyễn Việt Hoàng
24 tháng 11 2019 lúc 8:38

Đặt \(A=\left|x+5\right|+\left|x-7\right|\)

\(\Leftrightarrow A=\left|x+5\right|+\left|7-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A=\left|x+5\right|+\left|7-x\right|\ge\left|x+5+7-x\right|=12\)

\(\Rightarrow A\ge12\)

Dấu " = " xảy ra 

\(\Leftrightarrow\left(x+5\right)\left(7-x\right)=0\)

\(\Leftrightarrow-5\le x\le7\)

Vậy ..................

Khách vãng lai đã xóa
Đào Thị Thùy Dương
Xem chi tiết
Xyz OLM
8 tháng 7 2021 lúc 18:07

Để A đạt GTLN 

=> 6 - x  đạt GTNN 

=> 6 - x = 1 (Vì x nguyên) (nếu 6 - x < 0 thì A < 0 => A không đạt GTLN) 

=> x = 5

Vậy x = 5 thì A đạt GTLN

Khách vãng lai đã xóa
Hùng
Xem chi tiết
Yêu nè
5 tháng 1 2020 lúc 19:57

A=|x-1|+|x-2|+|x-3|+|x-4|

=> A=|x-1|+|x-2|+|3-x|+|4-x|\(\ge\)|x-1+x-2+3-x+4-x|

=>A\(\ge\)4

Dấu "=" xảy ra ⇔ (x-1)(x-2)(3-x)(4-x)=0

Còn bạn tự làm nôt nhé

Khách vãng lai đã xóa
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Thị Phương Thảo
22 tháng 7 2021 lúc 20:18

Toán lớp 6 

Khách vãng lai đã xóa
Kudora Sera
Xem chi tiết
trần đức mạnh
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Khách vãng lai đã xóa
trần đức mạnh
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Khách vãng lai đã xóa
Unirverse Sky
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Khách vãng lai đã xóa
Trang
Xem chi tiết
Nguyễn Văn Vinh
6 tháng 11 2016 lúc 20:50

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

Dương Nguyễn Ngọc Khánh
Xem chi tiết
Nguyễn Quang Tùng
6 tháng 2 2017 lúc 6:34

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

Ms. Yugi
Xem chi tiết
.
19 tháng 7 2020 lúc 15:00

Bài 1.

a.Ta có: (x - 1)2  ≥ 0 với mọi x ∈ Z

=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z

Dấu "=" xảy ra khi (x - 1)2 = 0

=> x - 1 = 0

=> x = 1

Vậy GTNN của A là 12 tại x = 1.

b. Có: |x + 3| ≥ 0 với mọi x ∈ Z

=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z

Dấu "=" xảy ra khi |x + 3| = 0

=> x + 3 = 0

=> x = -3

Vậy GTNN của B là 2020 tại x = -3.

Bài 2.

Có: |3 - x| ≥ 0 với mọi x ∈ Z

=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z

Dấu "=" xảy ra khi |3 - x| = 0

=> 3 - x = 0

=> x = 3

Vậy GTLN của Q là 20 tại x = 3.

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
19 tháng 7 2020 lúc 15:33

1. A = ( x - 1 )2 + 12

\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)

Dấu = xảy ra <=> x - 1 = 0 => x = 1

Vậy AMin = 12 khi x = 1

B = | x + 3 | + 2020

\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)

Dấu = xảy ra <=> x + 3 = 0 => x = -3

Vậy BMin = 2020 khi x = -3 

2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )

Q = 20 - | 3 - x | 

\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)

=> \(20-\left|3-x\right|\le20\forall x\)

Dấu = xảy ra <=> 3 - x = 0 => x = 3

Vậy QMax = 20 khi x = 3 

Khách vãng lai đã xóa
ミ★Ƙαї★彡
19 tháng 7 2020 lúc 15:35

a,  \(A=\left(x-1\right)^2+12\)

Ta có : \(\left(x-1\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-1\right)^2+12\ge12\)

Dấu ''='' xảy ra <=> x - 1 = 0 <=> x = 1 

Vậy GTNN của A là 12 tại x = 1 

b, \(B=\left|x+3\right|+2020\)

Ta có \(\left|x+3\right|\ge0\forall x\in Z\)

\(\Rightarrow\left|x+3\right|+2020\ge2020\)

Dấu ''='' xảy ra <=> x + 3 = 0 <=> x = -3

Vậy GTNN của B là 2020 tại x = -3 

Bài 2 tương tự 

Khách vãng lai đã xóa