Tìm số dư trong phép chia 2003 mũ 2004 mũ n (n thuộc N*) cho 5
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 ,Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11 b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
cho mik hỏi câu này nữa a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51
a,Chứng minh: C=(2004+2004 mũ 2 + 2004 mũ 3+....+2004 mũ 10) chia hết cho 2005
b,Tìm số nguyên n sao cho n+4 chia hết cho n+1
Cho A = 5 mũ 50 - 5 mũ 48 + 5 mũ 46 - 5 mũ 44 + .... + 5 mũ 6 - 5 mũ 4 + 5 mũ 2 - 5 mũ 1.
a) Tính A
b) Tìm số tự nhiên n biết: 26 . A + 1 = 5 mũ n
c) Tìm số dư trong phép chia A cho 100.
Mk đang cần gấp! Mọi người giúp mk nhé.
Ai nhanh, đúng mk tích cho!!!
c) Câu hỏi của Yumani Jeng - Toán lớp 6 - Học toán với OnlineMath
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết
b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 , Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11
b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).
1,tìm số dư của 1994^2005:7
2,cmr :6^1001-1 và 6^1001+1 đều chia hết cho7
3,tìm số dư trong phép chia 1532^5-1:9
4,tìm số dư trong phép chia 3^2003:13
5,tìm số dư trong phép chia 7.5^2n+12.6^n:19 (n thuộc N)
Giải bằng phép đồng dư
Cho a thuộc n . Tìm số dư phép chia a mũ 2 cho 3
1.Cho E=5+5 mũ 2+5 mũ 3+....+5 mũ 100. Tìm số dư khi chia E cho 6
2. Chứng tỏ rằng với mọi số tự nhiên n thì n(n+2)(n+7): 3( chia hết cho 3)
3. Tìm số nguyên tố nhỏ hơn 200 , biết rằng khi chia số đó cho 60 thì số dư là hợp số
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13
1, Tìm số tự nhiên n sao cho
a, n+5 chia hết cho n-1
b, 3n+1 chia hết cho n+1
2, Cho S = 1+2+2 mũ 2+...+2 mũ 2005
Hãy so sánh S với 5.2 mũ 2004
a)n+5 chia hết cho n-1
=>n-1+6 chia hết cho n-1
=> 6 chia hết cho n-1 hay n-1EƯ(6)={1;2;3;6}
=>nE{2;3;4;7}
b)3n+1 chia hết cho n+1
3n+3-2 chia hết cho n+1
3(n+1)-2 chia hết cho n+1
=>2 chia hết cho n+1 hay n+1EƯ(2)={1;2}
nE{0;1}