Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm hồng thái
Xem chi tiết
Nguyễn Văn Tiến
Xem chi tiết
Đinh Đức Hùng
10 tháng 8 2017 lúc 17:44

Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4n^2-4n+8=4a^2\)

\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)

\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)

=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7

Đến đây liệt kê ước của - 7 rồi xét các TH !!!

Trần Lê Anh Quân
Xem chi tiết
Cậu chủ họ Lương
23 tháng 8 2019 lúc 16:20

ta có n^3-n=n(n^2-1)=(n-1)n(n+1) chia hết cho 3

=> n^3-n+2 chia 3 dư 2 

mà số chính phương chia 3 dư 0 hoặc 1 suy ra vô nghiệm

Nguyễn Trọng Quang
1 tháng 9 2019 lúc 6:53

Ta có;                                    \(n^3-n=n^2.n-n=\left(n^2-1hay1^2\right).n=\left(n-1\right)\left(n+1\right)n\)

Vì n-1 ; n ; n+1 là ba số liên tiếp nên trong ba số chắc chắn có một thừa số chia hết cho 3.

Vậy \(\left(n^3-n\right)⋮3\)suy ra n\(^3\)-n + 2 chia cho 3 dư 2.

SCP không chia cho 3 dư 2 nên không có n sao cho số trên là SCP!

Nguyễn Đức Lâm
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 16:33

Lời giải:

$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$

Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$

$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$

$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.

Lê Nguyễn Minh Châu
Xem chi tiết
Mika Yuuichiru
Xem chi tiết
Thư
Xem chi tiết
AhJin
Xem chi tiết
shitbo
6 tháng 3 2021 lúc 8:23

https://h7.net/hoi-dap/toan-6/tim-n-biet-1-2-3-n-la-so-chinh-phuong-faq291864.html

bạn tham khảo

Khách vãng lai đã xóa
Trần Hoàng Phương
Xem chi tiết