Chứng minh rằng : S= (1999+1999^2+1999^3 +....+1999^1998) chia hết cho 2000
Chứng minh rằng: (1999+19992+19993+...+19991998) chia hết cho 2000
Ta có: A=1999+19992+19993+…+19991998
=> A=(1999+19992)+(19993+19994)+...+(19991997+19991998)
=> A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)
=> A=1999.2000+19993.2000+…+19991997.2000
=> A=(199+19993+…+199919997).2000
=> A chia hết cho 2000
=> (đpcm)
mình tự làm ko copy trong tưng tự
Gọi (1999+19992+19993+...+19991998) = S
Tổng S có : (1998-1)/1+1=1998 (số hạng)
Nếu ta cứ nhóm 2 số hạng liên tiếp kề nhau vào 1 nhóm bắt đầu từ số hạng đầu tiên thì ta được số nhóm là : 1998/2=999 (nhóm)
Ta có : S=1999+19992+19993+...+19991998
Suy ra:S=(1999+19992)+(19993+19994)+...+(19991997+19991998)
Suy ra:S=1999.(1+1999)+19993.(1+1999)+...+19991997.(1+1999)
Suy ra:S=1999.2000+19993.2000+...+19991997.2000
Suy ra:S=2000.(1999+19993+...+19991997)
Vì 2000 chia hết cho 2000 suy ra 2000.(1999+19993+...+19991997) chia hết cho 2000 hay S chia hết cho 2000
Vậy (1999+19992+19993+...+19991998) chia hết cho 2000
S=1999+19992+19993+...+19991998
=(1999+19992)+(19993+19994)+...+(19991997+19991998)
=1999(1+1999)+19993(1+1999)+...+19991997(1+1999)
=1999.2000+19993.2000+...+19991997.2000
=2000.(1999+19993+...+19991997)
Vậy S chia hết cho 2000
TA CÓ
1999+19992+...+19991998
=(1999+19992)+....+(19991997+19991998)
=1999(1+1999)+...+19991997(1+1999)
=2000(1999+19993+...19991997) Chia hết cho 2000
CHÚC BẠN HỌC TỐT
chứng minh rằng : A= ( 1999+ 19992 + 19993+ ...19991998) chia hết cho 2000
Chứng minh: (1999 + 1999^2 + 1999^3 +...+ 1999^1998) chia hết cho 2000
(1999 + 1999^2 + 1999^3 +...+ 1999^1998)
=1999(1+1999)+1999^3(1+1999)+...+1999^1997(1+1999)
=2000(1999+1999^3+...+1999^19997)
Do 2000 chia hết cho 2000
=>2000(1999+1999^3+...+1999^19997) chia hết cho 2000
Vậy (1999 + 1999^2 + 1999^3 +...+ 1999^1998) chia hết cho 2000
chứng minh rằng :
a, A= ( 1999+ 19992 + 19993+ ...19991998) chia hết cho 2000
b,B= 7+73+75+...+71999 chia hết cho 35
A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)
b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5
Chứng minh rằng:A=(1999+1999^2+1999^3+...+1999^1998) chia hết cho 200
CMR:S=(1999+19992+19993+.......19991998)chia hết cho 2000
S=(1999+19992+19993+...+19991998) chia het cho 2000
S = 1999 + 19992 + … + 19991998
S = 1999 ( 1 + 1999 + 19992 + … + 19991997 )
S = 1999 [ ( 1 + 1999 )( 1 + 19992 + 19994 + … + 19991996 ) ]
S = 1999 [ 2000 ( 1 + 19992 + 19994 + … + 19991996 ) ] chia hết cho 2000.
Vậy ta có điều phải chứng minh.
Chứng minh rằng
\(1999^{2016}+1999^{2015}+1999^{2014}+...+1999^2+1999\)chia hết cho (-2000)