Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào An Nguyên
Xem chi tiết
Nguyễn Tuấn Tài
13 tháng 7 2015 lúc 11:06

Ta có: A=1999+19992+19993+…+19991998

=>       A=(1999+19992)+(19993+19994)+...+(19991997+19991998)

=>       A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)

=>       A=1999.2000+19993.2000+…+19991997.2000

=>       A=(199+19993+…+199919997).2000

=>       A chia hết cho 2000

=>   (đpcm)

mình tự làm ko copy trong tưng tự 

Nguyen Dung
29 tháng 11 2016 lúc 20:20

Gọi  (1999+19992+19993+...+19991998) = S

Tổng S có : (1998-1)/1+1=1998 (số hạng)

Nếu ta cứ nhóm 2 số hạng liên tiếp kề nhau vào 1 nhóm bắt đầu từ số hạng đầu tiên thì ta được số nhóm là : 1998/2=999 (nhóm)

Ta có : S=1999+19992+19993+...+19991998

Suy ra:S=(1999+19992)+(19993+19994)+...+(19991997+19991998)

Suy ra:S=1999.(1+1999)+19993.(1+1999)+...+19991997.(1+1999)

Suy ra:S=1999.2000+19993.2000+...+19991997.2000

Suy ra:S=2000.(1999+19993+...+19991997)

Vì 2000 chia hết cho 2000 suy ra 2000.(1999+19993+...+19991997) chia hết cho 2000 hay S chia hết cho 2000

Vậy (1999+19992+19993+...+19991998) chia hết cho 2000

Việt NAm
Xem chi tiết
Nguyễn Trần Mạnh Hưng
6 tháng 4 2017 lúc 10:41

S=1999+19992+19993+...+19991998

 =(1999+19992)+(19993+19994)+...+(19991997+19991998)

=1999(1+1999)+19993(1+1999)+...+19991997(1+1999)

=1999.2000+19993.2000+...+19991997.2000

=2000.(1999+19993+...+19991997)

Vậy S chia hết cho 2000

Lê Trần Tuấn Hùng
6 tháng 4 2017 lúc 10:40

TA CÓ

1999+19992+...+19991998

=(1999+19992)+....+(19991997+19991998)

=1999(1+1999)+...+19991997(1+1999)

=2000(1999+19993+...19991997) Chia hết cho 2000

CHÚC BẠN HỌC TỐT

Hoan Mai Hữu
Xem chi tiết
Thu Hoàng
Xem chi tiết
Kunzy Nguyễn
28 tháng 7 2015 lúc 22:35

(1999 + 1999^2 + 1999^3 +...+ 1999^1998)

=1999(1+1999)+1999^3(1+1999)+...+1999^1997(1+1999)

=2000(1999+1999^3+...+1999^19997) 

Do 2000 chia hết cho 2000

=>2000(1999+1999^3+...+1999^19997) chia hết cho 2000

Vậy (1999 + 1999^2 + 1999^3 +...+ 1999^1998) chia hết cho 2000

lương thị thúy tuyên
Xem chi tiết
Đỗ Lê Tú Linh
4 tháng 12 2015 lúc 21:38

A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)

b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5

Trai Ho Nguyen
Xem chi tiết
Hà Trung Chiến
Xem chi tiết
Hyoudou Issei
Xem chi tiết
Thi Chinh Dinh
18 tháng 4 2016 lúc 18:32

S = 1999 + 19992 + … + 19991998

S = 1999 ( 1 + 1999 + 19992 + … + 19991997 )

S = 1999 [ ( 1 + 1999 )( 1 + 19992 + 19994 + … + 19991996 ) ]

S = 1999 [ 2000 ( 1 + 19992 + 19994 + … + 19991996 ) ] chia hết cho 2000.

Vậy ta có điều phải chứng minh. 

Mika Yuuichiru
Xem chi tiết