Cho B=80^2-79.80+1601
CMR: B là số chính phương của 1 số tự nhiên
Cho B=80^2-79.80+1601
CMR: B là số chính phương của 1 số tự nhiên
a. cho biểu thức :
A= 2010+2010^2+2010^3+......+2010^2010
CMR A chia hết cho 2011
b. Cho B = 80^2-79.80+1601
CMR ; B là bình phương của một số tự nhiên
Dấu ^ là mũ
THANK YOU VERY MUCH
biết số chính phương là bình phương của 1 số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh a-b có giá trị là 1 số chính phương
Lời giải:
\(a=\underbrace{111....1}_{2n}; b=\underbrace{22....2}_{n}\)
Đặt \(\underbrace{11...11}_{n}=a\Rightarrow 10^n=9a+1\)
Khi đó:
\(a-b=\underbrace{11...1}_{n}\underbrace{000...0}_{n}+\underbrace{11...1}_{n}-2.\underbrace{11...1}_{n}\)
\(=a(9a+1)+a-2a=9a^2=(3a)^2\) là số chính phương. Ta có đpcm.
Cho B = 802 - 79.80 + 1601
CMR: B là bình phương của 1 STN
biết số chính phương là bình phương của một số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh rằng a-b có giá trị là một số chính phương
\(a=111...1=\frac{10^{2n}-1}{9}=\frac{10^{2n}}{9}-\frac{1}{9}\)
\(b=222...2=\frac{2\left(10^n-1\right)}{9}=\frac{2.10^n}{9}-\frac{2}{9}\)
\(a-b=\frac{10^{2n}}{9}-\frac{1}{9}-\frac{2.10^n}{9}+\frac{2}{9}=\left(\frac{10^n}{3}\right)^2-2.\frac{10^n}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\)
\(=\left(\frac{10^n}{3}-\frac{1}{3}\right)^2\) Là 1 số chính phương
biết số chính phương là bình phương của một số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh rằng a-b có giá trị là một số chính phương
cho B=80^2-79.80+1601 .CMR :B không là số nguyên tố
1/ Tìm các cặp số tự nhiên xy thỏa mãn 35x+9=2.5y
2/ Số tự nhiên n sao cho n2+404 là số chính phương là ?
3/ Số tự nhiên a lớn nhất sao cho 80+a và 100-a đều là bội của a
CM:1 số chính phương khi chia cho 4 chỉ có số dư là 0 hoặc 1
b, CMR:Tổng bình phương của 2 số tự nhiên lẻ bất kì không là số chính phương
a,Gọi a là một số nguyên bất kỳ => a có dạng 2k hoặc 2k+1 (k\(\in\)Z)
Xét a = 2k=>\(a^2\)=\(\left(2k\right)^2\)=\(4k^2\)=>\(a^2\) chia 4 dư 0
Xét a= 2k+1=>\(a^2\)=\(\left(2k+1\right)^2\)=\(4k^2\)\(+\)\(4k+1\)=>\(a^2\) chia 4 dư 1
Vậy số chính phương khi chí cho 4 dư 0 hoặc 1.