tính \(y=\frac{1}{20}+\frac{1}{40}+\frac{1}{28}+\frac{1}{48}+\frac{1}{60}+\frac{1}{224}\)
TÍNH
A=\(\frac{1}{28}+\frac{3}{112}+\frac{1}{48}+\frac{1}{60}+\frac{3}{220}\)
Tính tổng: \(S=\frac{1}{3}+\frac{1}{12}+\frac{1}{30}+\frac{1}{60}+\frac{1}{105}+\frac{1}{168}+\frac{1}{224}+\frac{1}{360}+\frac{1}{495}\)
A=\(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}\)
B=\(\frac{1}{20}+\frac{-1}{30}+\frac{1}{40}+\frac{-1}{50}+\frac{1}{60}+\frac{-1}{70}+\frac{1}{80}+\frac{1}{70}+\frac{-1}{60}+\frac{1}{50}+\frac{-1}{40}+\frac{1}{30}+\frac{-1}{20}\)
giúp mình giải các bài toán này nha mình đang càn gấp cảm ơn các bạn nhiều
A=\(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{14}\)=\(\frac{1}{7}-\frac{1}{14}\)=\(\frac{1}{14}\)
B=0
\(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}\)
\(=\frac{1}{7}-\frac{1}{14}=\frac{1}{14}\)
A=\(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}\)
A=\(\left(\frac{1}{7}-\frac{1}{8}\right).\left(\frac{1}{8}-\frac{1}{9}\right).\left(\frac{1}{9}-\frac{1}{10}\right).\left(\frac{1}{10}-\frac{1}{11}\right).\left(\frac{1}{11}-\frac{1}{12}\right).\left(\frac{1}{12}-\frac{1}{13}\right).\left(\frac{1}{13}-\frac{1}{14}\right)\)
A=\(\frac{1}{7}-\frac{1}{14}\)
A=\(\frac{1}{14}\)
Chứng minh rằng:
1)B=\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}< 100\)
2)C=\(\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}\)<\(\frac{1}{48}\)
3)D=\(\frac{11}{9}+\frac{18}{16}+\frac{27}{25}+...+\frac{1766}{1764}\)
\(40\frac{20}{43}< D< 40\frac{20}{21}\)
A=\(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}\)\(+\frac{1}{80}+\frac{1}{120}+\frac{1}{168}+\frac{1}{224}\)
A=1/8+1/24+1/48+1/80+1/120+1/168+1/224=>2A=2/8+2/24+2/48+2/80+2/120+2/168+2/224
2A=2/2*4+2/4*6+2/6*8+2/8*10+2/10*12+2/12*14+2/14*16
2A=1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12+1/12-1/14+1/14-1/16
2A=1/2-1/16
2A=7/16
A=7/16:2
A=7/32
bài 1 ; thực hiện phép tính (tính nhanh nếu có thể)
a) \(\left(\frac{-1}{4}+\frac{7}{33}-\frac{5}{3}\right)-\left(\frac{-15}{12}+\frac{6}{11}-\frac{48}{49}\right)\)
b) \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{29}{42}:\frac{1}{28}-8\)
\(\left(\frac{-1}{4}+\frac{7}{33}-\frac{5}{3}\right)-\left(\frac{-5}{4}+\frac{6}{11}-\frac{48}{49}\right)=\left(\frac{-1}{4}-\frac{16}{11}\right)-\left(-\frac{31}{44}-\frac{48}{49}\right)=-\frac{1}{4}-\frac{16}{11}+\frac{31}{44}+\frac{48}{49}=-\frac{1}{49}\)
\(S=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{224}\)
Các bạn giúp mình nhé !
\(S=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{224}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{14.16}\)
\(2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{14.16}\)
\(2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{16}\)
\(2S=\frac{1}{2}-\frac{1}{16}\)
\(S=\frac{7}{16}:2=\frac{7}{32}\)
Ủng hộ mk nha !!! ^_^
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{14.16}\)
\(S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{16}\)
\(S=\frac{1}{2}-\frac{1}{16}\)
\(S=\frac{7}{16}\)
\(S=\frac{1}{8}+\frac{1}{24}+...+\frac{1}{224}\)
\(\Rightarrow\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{14.16}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{14.16}\right)\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{14}-\frac{1}{16}\right)\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{16}\right)\)
\(\Rightarrow\frac{1}{2}.\frac{15}{16}\)\(\Rightarrow S=\frac{15}{32}\)
tính giá trị biểu thức
\(A=\frac{-378.132+189.64}{15+18+21+......+45+48}\)
\(B=1,4.\frac{15}{14}-\left(\frac{4}{5}+\frac{2}{5}\right):2\frac{1}{5}-\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{\frac{25}{24}+\frac{15}{180}+\frac{20}{285}}\)
\(C=\frac{7+\frac{7}{12}-\frac{7}{144}+\frac{7}{60}}{5+\frac{6}{12}-\frac{5}{144}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{34}}-\frac{1}{20}\)
1,Tính nhanh
\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{6}{7}=\frac{3}{7}\)
Đặt \(C=\frac{1}{2}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{84}\)
\(\Rightarrow\frac{C}{2}=1+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2}-\frac{1}{7}\)
\(\Rightarrow C=\left(1+\frac{1}{2}-\frac{1}{7}\right).2\)