chung minh
(2+2^3+2^5+2^7+...+2^1999) Chia het cho 10
chung minh rang
a,A=75(4^1999+4^1988+.......+4^2+4+1)+25 chia het cho 222
b,2a^2+4a+5 chia het cho a+2
c,4a^3+14a^2+6a+12 chia hat cho 2a+1
d,B=(-7)+(-7)2+......+(-7)2006 + (-7)2007 chia het cho 43
e,E=7+72+73+.......+74n chia het cho 400
chung minh A= 2 + 2^2 +2^3 +2^4 +.........+2^60 chia het cho 7
tim so tu nhien n de : n+4 chia het cho n+1
chung minh ( 1+2 +2^2 +2^3+2^4+2^5+2^6+2^7) chia het cho 3
1. A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7
Vậy ...
2.Ta có : \(n+4⋮n+1\)
Mà : \(n+1⋮n+1\)
\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )
B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3
Vậy ...
chứng minh
a ) 5^5 - 5^4 + 5^3 chia het cho 7
b) 3 ^n+2 - 2^n+2 + 3^n - 2^n chia het cho 10
c) 3 ^n+3 + 3^n+1 + 2^+3 + 2^n+2 chia het cho 6
d ) A = 2+2^2+2^3+....+ 2^12 chia het cho 7
g ) B= 2^35 + 2^36 + 2^37 + 2^38 chia het cho 3
k) C = 1 + 3 + 3^2 + ...+ 3^61
chung to C chia het cho 4
chung to C k chia het cho 3
h ) 5^n+2 + 3^n+2 - 3^n - 5^n chia het cho 24
gíúp mk vs ạ
a)chung minh A= 2^1+2^2+2^3+2^4+...2^2010chia het cho 3
b)chung minh B= 3^1+3^2+3^3+3^4+...3^2010chia het cho 4
c)chung minh C= 5^1+5^2+5^3+5^4+...5^2010chia het cho 6
d)chung minh D= 7^1+7^2+7^3+7^4+...7^2010chia het cho 8
a) A=21+22+23+...+22010
A=(21+22)+(23+24)+.....+(22009+22010)
A=(21x3)+(23x3)+.....+(22009x3)
A=3x(21+23+.......+22009)
Vậy A chia hết cho 3.
NHỮNG CÂU CÒN LẠI BẠN LÀM TƯƠNG TỰ !
BAI 1 :
CHO 3a + 2b chia het cho 17 ( a , b thuoc N ) . CHUNG MINH RANG : 10a + b chia het cho 17
BAI 2 :
CHUNG MINH RANG : neu m + 4n chia het cho 13 . MOI m,n deu thuoc N
BAI 3 : CHUNG MING RANG :
a) 55 - 54+ 53 chia het cho 7
b) 109 + 108+ 107chia het cho 222
GIUP MINH 3 BAI NAY VOI !
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
1) Thuc hien phep tinh:
a) 4^6 × 9^2 / 6^3 × 8^2
b) 5^6 × 15^4 /5^4 × 3^3
c) 3^9 - 2^3 × 3^7 + 2^10 × 3^2 - 2^13 / 3^10 - 2^2 × 3^7 + 2^10 × 3^3 - 2^12
d) (1/9)^10 : (1/3)^20
e) (1/64)^5 × (1/4)^7
2) Chung minh rang:
a)2014^100+2014^99 chia het cho 2015
b) 4^13+32^5-8^8 chia het cho 5
c) 81^27-27^9-9^13 chia het cho 405
Help me!! Pleass!!
Chứng minh rằng
a,5^5 - 5^4 + 5^3 chia het cho 7
7^6 : 7^5 - 7^4 chia het cho 11
10^6 - 5^7 chia het cho 59
10^9 + 10^8 10^7 chia het 22
3 + 2 +3 + 2 chia het cho 10 n thuoc n*
chung minh rang: A=(1999+19992+19993+...+19991998) chia het cho 2000
Ta có: A=1999+19992+19993+…+19991998
=> A=(1999+19992)+(19993+19994)+...+(19991997+19991998)
=> A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)
=> A=1999.2000+19993.2000+…+19991997.2000
=> A=(199+19993+…+199919997).2000
=> A chia hết cho 2000
=>ĐPCM
l-i-k-e cho mình nha bạn
Ta có: A = (1999+19992+19993+...+19991998) chia hết cho 2000
= (1999+19992)+(19993+19994)+...+(19991997+19991998)
= 1999.(1999+1)+19993.(1999+1)+...+19991997.(1999+1)
= 1999.2000+19993.2000+...+19991997.2000
= 2000.(1999+19993+...+19991997)
=> Vậy, ta đã chứng minh được A chia hết cho 2000
S=2+2^2+2^3+2^4+..............+2^1999+2^2000 chung minh S chia het cho 6
S có số số hạng là (2000-1):1+1=2000 ssh
vì 2+2^2 chia hết cho 6 mà 2000 chia hết cho 2
suy ra S chia hết cho 6