chứng tỏ rằng 8^2012-8^2011-8^2010 chia hết cho 55
CMR:
a,8\(^{^{ }2012}\)-8\(^{^{ }2011}\)-8\(^{^{ }2010}\)chia hết cho 55
b,10\(^{2010}\)+10\(^{^{ }2011}\)+10\(^{^{ }2012}\)chia hết cho 555
Giải đầy đủ giùm mk nha!
Chứng tỏ rằng:20119 +20118 chia hết cho 2012.
chứng tỏ rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3
số 215+424 có chia hết cho 2 ko?
tính tổng
S1=3+4+6+8+...+2010+2012
S2=2+3+5+7+...+2011+2012
*/ Tổng của 3 số tự nhiên liên tiếp có dạng: a+(a+1)+(a+2)=3a+3=3(a+1) => Luôn chia hết cho 3
*/ 215+424=2.214+2.212=2(214+212) => Luôn chia hết cho 2
*/ \(S1=\frac{2012\left(2012-1\right)}{2}-1-2=2023063\)
*/ \(S2=\frac{2012\left(2012-1\right)}{2}-1=2023065\)
Cho A= 10^2012 + 10^2011 + 10^2010 + 10^2009 + 8 . Chứng minh rằng A chia hết cho 24
chứng tỏ rằng (2+2^2+2^4+2^8+. . .+2^2011+2^2012) chia hết cho 3
Cho A=10^2012 +10^2011 +10^2010 +10^2009 +8
a) Chứng minh rằng A chia hết cho 24
b) Chứng minh rằng A không phải là 1 số chính phương
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
A=10^2012+10^2011+10^2010+10^2009+8 chứng minh A chia hết cho 24
ta có :
A chia hết cho 8 do từng hạng tử của A chi hết cho 8
mà \(10^{2012},10^{2011},10^{2010},10^{2009}\text{ chia 3 dư 1}\)
thế nên \(A\text{ đồng dư 1+1 +1 +1 +8 =12 khi chia cho 3}\)
Hay A cũng chia hết cho 3. Vậy A vừa chia hết cho 8 vừa chia hết cho 3 nên A chia hết cho 24
cho A= 10^2012+10^2011+10^2010+10^2009+8
a, chứng minh rằng A chia hết cho 24
b,A không là số chính phương
cho A = 10^2012 + 10^2011 + 10^2010 + 10^2009 +8
a, chứng minh rằng A chia hết cho 24
b,chứng minh A ko phải số chính phương