1. CMR: Với mọi n thuộc N* thì \(2.7^n+1\)chia hết cho 3
1, cmr Với mọi x thuộc N luôn có: A(x)=46^x+296.13^x chia hết cho 1947
2,cmr A=220^119^69+119^69^220+69^220^119 chia hết cho 102
B=1890^1930+1945^1975+1 chia hết cho 7
3,cmr:
a,12^2n+1+11^n+2 chia hết cho 133
b,7.5^2n+12.6^n chia hết cho19
c,2.7^n+1 chia hết cho 3
d,21^2n+1+17^2n+1+19 chia hết cho19
e,9^n-1 chia hết cho 4
CMR :
Nếu với mọi n thuộc N : n2 - 1 ko chia hết cho 24 thì n chẵn hoặc n chia hết cho 3
Nếu n chẵn
=> n2-1 lẻ
=> không chia hết cho 24 (1)
Nếu n chia hết cho 3
=> n2 chia hết cho 3
=> n2-1 không chia hết cho 3
=> n2-1 không chia hết cho 24 (2)
Từ (1) và (2)
=> đpcm
CMR với mọi n thuộc n số tự nhiên thì:
a) 10^n +2 chia hết cho 3
b) 2*n +111...1 n chữ số 1 chia hết cho 3
câu b
2xn +11...1 n chữ số 1 = 3n-n+11...1
=3n+(11....1-n)
Ta thấy tổng các chữ số của 11...1 là n
=> 11...1 và n có cùng một số dư
=>(111...1-n) chia hết cho 3
Mà 3n chia hết cho 3
=>3n+(11...1-n) chia hết cho 3
Hay 2n +111...1 chia hết ch03
Vậy 2n+111....1 chia hết cho 3
Có mí chỗ mk không ghi là n chữ số 1 bạn ghi hộ mk nhé
CMR: Nếu n chia hết cho 3 thì A(n)=32n+3n+1 chia hết cho 13 Với mọi n thuộc N. Nhanh nhé đang gấp
bài 1. CMR: n4-1 chia hết cho 8 với mọi n lẻ
bài 2. CMR: B=\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)là số nguyên với mọi n thuộc Z
bài 3. CMR: (n2+n-1)2 -1 chia hết cho 24 với mọi n thuộc Z
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ai giải giúp mình bài 2 và bài 3 với
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
a, Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^3 chia 3 dư 1
b, CMR với mọi n,m thuộc N ta luôn có m.n(m^2-n^2) chia hết cho 3
Các cụ cho con bỏ câu này
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
khó.......................................qáu
CMR với mọi n thuộc N và n >1 thì n^n - n^2 + n -1 chia hết cho (n-1)^2
CMR với mọi n thuộc N thì
a,9^n+1 không chia hết cho 100
b, n^2+n+1 không chia hết cho 15
a, Ta có : 9 đồng dư với 1 (mod 4 ) => 9n đồng dư với 1 ( mod 4)
=> 9n+1 đồng dư với 2 (mod 4) ko chia hết cho 4 => 9n+1 ko chia hết cho 100 (vì 100 chia hết cho 4)
b, Gỉa sử n chia hết cho 3
=> n2+n+1 chia 3 dư 1.
Nếu n chia 3 dư 1
=> n2 đồng dư với 1 mod 3 => n2+n+1 chia hết cho 3
Nếu n chia 3 dư 2
=> n2 chia 3 dư 1 => n2+n+1 chia 3 dư 1.
Suy ra n chia 3 dư 1 để n2+n+1 chia hết cho 5
=> n2+n có tận cùng là 4 hoặc 9 mà hai số liên tiếp nhân nhau ko có tận cùng là 4 hoặc 9
=> n2 + n+1 ko chia hết cho 15.
thấy sai thì góp ý nha