CMR: \(222^{333}+333^{222}\) chia hết cho 13
CMR 222^333 + 333^222 chia hết cho 13
\(222^{333}+333^{222}=\left(2^3\right)^{111}+\left(3^2\right)^{111}=8^{111}+9^{111}=\left(8+9\right)\cdot Q=17\cdot Q⋮17\)
Có thể mình làm sai hoặc bạn nhầm đề rồi nha!
cảm ơn bạn nhiều mình không chắc là mình viết đứng ko nữa dù sao cũng cảm ơn bạn vì đã giúp mình
CMR : 222333 + 333222 chia hết cho 13
Ta có:
\(222^{333}+333^{222}=111^{333}.2^{333}+111^{222}.3^{222}\)
\(=111^{222}\left[\left(111.2^3\right)^{111}+\left(3^2\right)^{111}\right]\)
\(=111^{222}\left(888^{111}+9^{111}\right)\)
\(\Rightarrow888^{111}+9^{111}\)
\(=\left(888+9\right)\left(888^{110}-888^{109}.9+...-888.9^{109}+9^{110}\right)\)
\(=13.69.\left(888^{110}-888^{109}.9+...-9^{109}+9^{110}\right)\)
\(=13.69.Q\)
\(\Rightarrow222^{333}+333^{222}⋮13\) (Đpcm)
CMR:222333+333222 chia hết cho 13
CMR
(222^333 +333^222)chia hết cho 13
(36^36-9^10)chia hết cho 45
Ai nhanh mk like
Áp dụng hằng đẳng thức sau
an−1=(a−1).[an−1+an−2+...+1]=(a−1).pan−1=(a−1).[an−1+an−2+...+1]=(a−1).p (nn là 1 số nguyên dương)
an+1=(a+1).[an−1−an−2+..+1]=(a+1).qan+1=(a+1).[an−1−an−2+..+1]=(a+1).q (nn là 1 số nguyên dương lẻ)
Thay vào ta được như sau:
+) 222333−1=(222−1).p=13.17.p222333−1=(222−1).p=13.17.p
+) 333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q
=>=> 222333+333222=222333−1+333222+1=13(17p+8530q)⋮13222333+333222=222333−1+333222+1=13(17p+8530q)⋮13
Vậy: 222333+333222⋮13222333+333222⋮13 (đpcm)(đpcm)
CMR
(222^333 +333^222)chia hết cho 13
(36^36-9^10)chia hết cho 45
Ai nhanh mk like
\(\left(222^{333}+333^{222}\right)⋮13\)
an−1=(a−1).[an−1+an−2+...+1]=(a−1).p" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvetica,arial,sans-serif; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">n" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvetica,arial,sans-serif; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">an+1=(a+1).[an−1−an−2+..+1]=(a+1).q" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvetica,arial,sans-serif; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">n" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvetica,arial,sans-serif; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">222333−1=(222−1).p=13.17.p" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvetica,arial,sans-serif; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvetica,arial,sans-serif; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
=>" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvetica,arial,sans-serif; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
a) \(222^{333}+333^{222}\)
\(=\left(111.2\right)^{333}+\left(111.3\right)^{222}\)
\(=111^{333}.2^{333}+111^{222}.3^{222}\)
\(=111^{222}.\left(111^{111}.2^{333}+3^{222}\right)\)
\(=111^{222}.\left(111^{111}.2^{3.111}+3^{2.111}\right)\)
\(=111^{222}.\left[111^{111}.\left(2^3\right)^{111}+\left(3^2\right)^{111}\right]\)
\(=111^{222}.\left(111^{111}.8^{111}+9^{111}\right)\)
\(=111^{222}.\left[\left(111.8\right)^{111}+9^{111}\right]\)
\(=111^{222}.\left(888^{111}+9^{111}\right)\)
\(=111^{222}.\left(888+9\right)\left[888^{110}-888^{109}.9+.....-888.9^{109}+9^{110}\right]\)
\(=111^{222}.7992\left[888^{110}-888^{109}.9+.....-888.9^{109}+9^{110}\right]\)
\(=111^{222}.897\left[888^{110}-888^{109}.9+.....-888.9^{109}+9^{110}\right]\)
\(=111^{222}.13.69\left[888^{110}-888^{109}.9+.....-888.9^{109}+9^{110}\right]⋮13\)
Vậy \(222^{333}+333^{222}⋮13\left(dpcm\right)\)
CMR: 222333 + 333222 chia hết cho 13
Dùng đồng dư mod nhá
Ta có 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13)
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13)
Cộng lại ta có:
222^333 + 333^222 ≡ 0 (mod 13) đpcm
Bài 2:
Ta có 109^3 ≡ 1 (mod 7) nên 109^345 ≡ 1( mod 7)
Vậy số dư của phép chia trên là 1
Câu1:Tìm các số nguyên dương a để:
(a3-3)chia hết cho(a-3)
câu 2:CMR:
222333+333222chia hết cho 13
chứng minh rằng :222 mũ 333 +333 mũ 222 chia hết cho 13
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
a)
Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)
\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)
\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)
\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $222^{333}+333^{222}$ chia hết cho $13.$
b) Ta có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)
\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)
\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $3^{105}+4^{105}$ chia hết cho $13.$
Lại có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)
\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)
Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)
Vậy $3^{105}+4^{105}$ không chia hết cho $11.$
P/s: Rất lâu rồi không giải, không chắc.