Tập hợp các số tự nhiên n đẻ p=\(\frac{n+4}{2n-1}\) là số nguyên tố
Tập hợp các số tự nhiên n để n+4/2n+1 là số nguyên tố
Tìm tập hợp các số tự nhiên n để p=\(\frac{n+4}{2n-1}\)là số nguyên tố
để p là số nguyên thì n+ 4 phải chia hết cho 2n - 1
=> 2(n+4) phải chia hết cho 2n -1
=> 2(n+4) - (2n-1) chia hết cho 2n-1
=> 9 chia hết cho 2n - 1 hay 2n -1 thuộc Ư(9) = {9;3;1}\
Nếu 2n - 1 = 9 => n = 5 => p = 9/9 = 1 nhưng 1 không là số nguyên tố nên loại
nếu 2n -1 = 3 => n = 2 => p = 6/3 = 2 là số nguyên tố => nhận
nếu 2n - 1 = 1 => n = 1 => p = 5/1 = 5 là số nguyên tố => nhận
Vậy n = 1; 2 thoả mãn
Tập hợp các số tự nhiên n để p =(n+4).(2n-1)là số nguyên tố là ?
Lời giải:
Để $p=(n+4)(2n-1)$ là snt thì 1 trong 2 thừa số của nó bằng $1$ và thừa số còn lại là snt.
Hiển nhiên $n+4>1$ với mọi $n$ tự nhiên.
$\Rightarrow 2n-1=1\Rightarrow n=1$
Khi đó: $p=5.1=5$ là snt (thỏa mãn)
Tập hợp các số tự nhiên n để p=n+4/2n-1 là số nguyên tố là?
Tập hợp các số tự nhiên n để p=\(\frac{n+4}{2n-1}\)
là số nguyên tố
Tập hợp các số tự nhiên n để \(p=\frac{n-4}{2n-1}\) là số nguyên tố là {.................................}
(Nhập các giá trị theo thứ tự tăng dần, cách nhau bởi dấu
{0;1;4} chỉ là số nguyên dương thôi sao ko cả số nguyên âm !
đung thi chon
Tìm tập hợp các số tự nhiên n để p=n+4/2n-1 là số nguyên tố
Các bạn cho mình biết cách làm nếu có thể nhé!Cảm ơn nhiều!
Tập hợp các số tự n để p=n+4/2n-1 là số nguyên tố
*Cho m, n là các số tự nhiên và p là số nguyên tố thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\).
Tính \(A=p^2-n\) ta được A =
*Tập hợp các số tự nhiên n để \(P=\frac{n+a}{2n-1}\) là số nguyên tố là {..........}
(Nhập các giá trị theo thứ tự tăng dần, cách nhau bởi dấu ";")