Tìm GTNN của biểu thức
B=(2x-1) ² +|y-2|+2020
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ
a)Tìm GTNN của biểu thức A=\(\left(2x+\frac{1}{3}\right)^4-1\)
b) Tìm GTLN của biểu thứcB=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
CẦN GẤP
tìm GTNN của biểu thức
a)B= 2x^2-2xy+5y^2+5
b)C= 5x^2+5y^2+8xy+2y-2x+2020
c)D= 5x^2+y^2+z^2-4x-2xy-z-1
Bài 1 Thực hiện phép tính rồi tính giá trị của biểu thức
b) B=4x.(2x+y)+2y.(2x+y)-y(y+2x) vs x=1/2 ; y=-3/5
Ta có:
\(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)\)
\(\Leftrightarrow B=\left(4x+2y-y\right)\left(2x+y\right)=\left(4x+y\right)\left(2x+y\right)=\left(4.\dfrac{1}{2}+\dfrac{-3}{5}\right)\left(2.\dfrac{1}{2}+\dfrac{-3}{5}\right)=\dfrac{14}{25}\)
Tìm GTNN của các biểu thức sau:
C=2|x-1|+|2x+3|-2020
D=|3-2x|+2|1-x|+\(\frac{1}{2}\)
E=|3x+1|+2|x-y|+1
F=5|x-1|+\(\frac{1}{2}\)|2x+y|+2020
mong mn trình bày cả lời giải giúp mình
Xin cảm ơn
C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé
E = | 3x + 1 | + 2| x - y | + 1
\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)
=> MinE = 1 <=> x = y = -1/3
F = 5| x - 1 | + 1/2| 2x + y | + 2020
\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
=> MinF = 2020 <=> x = 1 ; y = -2
C = 2| x - 1 | + | 2x + 3 | - 2020
= | 2x - 2 | + | 2x + 3 | - 2020
= | 2x - 2 | + | -( 2x + 3 ) | - 2020
= | 2x - 2 | + | -2x - 3 | - 2020
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 2 )( -2x - 3 ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)
=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)
D = | 3 - 2x | + 2| 1 - x | + 1/2
= | 3 - 2x | + | 2 - 2x | + 1/2
= | -( 3 - 2x ) | + | 2 - 2x | + 1/2
= | 2x - 3 | + | 2 - 2x | + 1/2
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 3 )( 2 - 2x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)
=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)
Cảm ơn bạn nhiều
Tìm GTNN của. biểu thứcB=x2 .(2-x) vớix nhỏ hơn hoặc bằng 4
ê ai còn thức thì kb rùi tán vs tui đuê
mà ko có cx được để tui học
tìm GTNN của biểu thức
A=2x2+4y2-4x+4xy+2020
Ta có
A=2x2+4y2-4x+4xy+2020
=(x^2+4y^2+4xy)+(x^2-4x+4)+2016
=(x+2y)^2+(x-2)^2+2016
Thấy
(x+2y)^2>=0 với mọi x,y
(x-2)^2>=0 với mọi x
=>(x+2y)^2+(x-2)^2+2016>=2016 với mọi x,y
Hay Min A>=2016
Dấu "=" xảy ra<=>(x+2y)^2=0 và(x-2)^2=0
<=>x=2;y=-1
Vậy Min A=2016 tại x=2 và y=-1
D=\(\frac{x^2-2x+2020}{x^2}\) Tìm GTNN của biểu thức
Tìm GTNN của biểu thức :
B=(3x+27)20+(y-1)2+2020
Bài làm:
Ta có: \(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\\\left(y-1\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)
\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2\ge0\left(\forall x,y\right)\)
\(\Rightarrow B\ge2020\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(3x+27\right)^{20}=0\\\left(y-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Vậy \(Min_B=2020\Leftrightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Ta có: \(\left(3x+27\right)^{20}\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
=> \(\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\forall x;y\)
=> \(B\ge2020\)
Vậy GTNN của B là 2020 <=> x=-9, y=1
\(B=\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\)
\(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(3x+27\right)^{20}+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x+27=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Vậy BMin = 2020 ,đạt được khi x = -9 và y = 1