\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}......\frac{99}{10^2}\)
Tìm tích \(\frac{3}{2^2}+\frac{8}{3^2}+\frac{15}{4^2}+.....+\frac{99}{10^2}\)
Tim tich:
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}....\frac{99}{10^2}\)
Tính
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{99}{10^2}\)
mk ko piết tính nhưng pn nên tìm ra quy tắc pn sẽ lm dc
\(\frac{3}{2^2}\).\(\frac{8}{3^2}\).\(\frac{15}{4^2}\)...\(\frac{99}{10^2}\)
Lời giải:
Ta có:
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}....\frac{99}{10^2}=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{9.11}{10^2}\)
\(=\frac{(1.3).(2.4).(3.5)...(9.11)}{2^2.3^2.4^2...10^2}\)
\(=\frac{(1.2.3...9)(3.4.5...11)}{(2.3.4...10)(2.3.4..10)}\)
\(=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}\)
Rút gọn biểu thức
1) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8+2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
2) \(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right):\left(\sqrt{5}-2\right)\)
3) \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
4) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
5) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{98}-\sqrt{99}}+\frac{1}{\sqrt{99}-\sqrt{100}}\)
6) \(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
7)\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}+2\right)\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(24+8\sqrt{6}\right)\left(\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
Sao làm hổng ai bảo đú.n/g vậy :(((
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{1000-1}\right)\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)
ai tìm đc tích này tặng ba tik
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{999}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-998}{999}=\frac{1}{999}\)
-------
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}=\frac{3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}=\frac{\left(2.3.4...9\right).\left(3.4.5...11\right)}{\left(2.3.4...10\right).\left(2.3.4...10\right)}=\frac{1.11}{10.2}=\frac{11}{20}\)
E cứ xem bài của Trà My nhé. Cậu ấy làm gần đúng rồi đó
~ So sad :( !! ~
Câu 2:
\(\frac{3}{2^2}.\frac{8}{3^2}...\frac{99}{10^2}\)=\(\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\cdot\cdot\frac{9\cdot11}{10\cdot10}=\frac{1\cdot3\cdot2\cdot4\cdot\cdot\cdot9\cdot11}{2\cdot2\cdot3\cdot3\cdot\cdot\cdot10\cdot10}=\frac{\left(1\cdot2\cdot\cdot\cdot9\right).\left(3\cdot4\cdot\cdot\cdot10\right)}{\left(2\cdot3\cdot\cdot\cdot10\right)\cdot\left(2\cdot3\cdot\cdot\cdot10\right)}=\frac{1\cdot10}{10.2}=\frac{1}{2}\)
a,A=\(2\frac{1}{2}:\left(\frac{-1}{2}\right)^2-\frac{1}{-3}.\left(\frac{-1}{2}-\frac{4}{3}:\frac{-8}{9}\right)\)
b,B=\(\left(3\frac{10}{99}+4\frac{11}{99}-\frac{58}{299}\right).\left(\frac{1}{2}-\frac{4}{3}-\frac{1}{6}\right)\)
Trả lời
B=(3 10/99+4 11/99-58/299).(1/2-4/3-1/6)
=(......................................).0
=0.
1:
a) Cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) . So sánh A và \(\frac{199}{100}\)
b) Tìm tích: \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.\frac{24}{5^2}.....\frac{99}{10^2}\)
A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
A < 1 - \(\frac{1.}{100}\)
A < \(\frac{99}{100}< \frac{199}{100}\)
=> A < \(\frac{199}{100}\)
b,
S = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)
S = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}\)
S = \(\frac{1.3.2.4.3.5.4.6.5.7...9.11}{2.2.3.3.4.4...10.10}\)
S = \(\frac{1.2.3^2.4^2.5^2...9^2.10.11}{2^2.3^3.4^2...10^2}\)
S = \(\frac{1.11}{2.10}\)
S = \(\frac{11}{20}\)
1) \(2x-\frac{4}{3}-\frac{4}{15}-\frac{4}{35}-\frac{4}{63}-\frac{4}{99}=\frac{15}{17}\)
2)\(\frac{10}{1\cdot2\cdot3}+\frac{10}{2\cdot3\cdot4}+\frac{10}{3\cdot4\cdot5}+.....+\frac{10}{100\cdot101\cdot102}\)
2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\frac{2575}{5151}\)
\(=2,499514657\)