chứng minh rằng trong hai số chẵn liên tiếp có một và chỉ một số chia hết cho 4
chứng minh rằng trong hai số chẵn liên tiếp có một và chỉ một số chia hết cho 4
Hai số chẵn liên tiếp có dạng 2a và 2a+2.Ta có
2ax(2a+2)=4ax(a+1)chia hết cho 4.Suy ra 2a hoặc 2a+2 phải chia hết cho 4 mặt khác 2a+2a+2 = 4a+2 ko chia hết cho 4.
.Vậy nếu 2a chia hết cho 4 thì 2a+2 ko chia hết cho 4 ngược lai nếu 2a+2 chia hết cho 4 thì 2a ko chia hết cho 4.
Vậy trong 2 số chẵn liên tiếp chỉ có 1 số chia hết cho 4.
Chứng tỏ rằng:
a) Trong ba số tự nhiên liên tiếp, có một và chỉ một số chia hết cho 3
b) Trong hai số tự nhiên chẵn liên tiếp, có một và chỉ một số chia hết cho 4
3 số tự nhiên liên tiếp la x;x+1;x+2
Giả sử x chia hết cho 3 thì => ĐPCM
Giả sử x không chia hết cho 3 tức là x chia 3 dư 1 hoặc 2. Vậy x+1 hoặc x+2 sẽ chia hết cho 3; khi đó 2 số tự nhiên liên tiếp còn lại sẽ có 1 trong 2 số chia hết cho 3.
Chứng tỏ rằng: a) Trong bốn số tự nhiên liên tiếp, có một số chia hết cho 4. b) Trong hai số tự nhiên chẵn liên tiếp, có một và chỉ một số chia hết cho 4.
giúp mình với mình đang cần gấp
a)Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
b)
Hai số chẵn liên tiếp có dạng 2a và 2a+2.Ta có
2ax(2a+2)=4ax(a+1)chia hết cho 4.Suy ra 2a hoặc 2a+2 phải chia hết cho 4 mặt khác 2a+2a+2 = 4a+2 ko chia hết cho 4.
.Vậy nếu 2a chia hết cho 4 thì 2a+2 ko chia hết cho 4 ngược lai nếu 2a+2 chia hết cho 4 thì 2a ko chia hết cho 4.
Vậy trong 2 số chẵn liên tiếp chỉ có 1 số chia hết cho 4.
Chứng minh rằng :
a. Trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 3.
b. Trong 4 số tự nhiên liên tiếp luôn có một số chia hết cho 4.
c. Nêu kết luận tổng quát từ câu a và câu b
d. Chứng minh rằng : tích của hai số chẵn liên tiếp chia hết cho 8
1.chứng minh rằng:
a)trong 3 stn liên tiếp ,có một và chỉ 1 số chia hết cho 3
b)trong 2 stn chẵn liên tiếp,có 1 và chỉ một số chia hết cho 4
các bạn ghi cách giải hộ mình nhé
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2
TH1 nếu a chia hết cho 3
=> a có dạng 3k
=>a+1=3k+1(ko chia hết cho 3)
=>a+2=3k+2(ko chia hết cho 3)
Vậy trong 3 số chỉ có duy nhất 1 số a chia hết cho 3
TH2 a+1 chia hết cho 3
=>a+1 có dạng 3k
=>a=3k-1 (ko chia hết cho 3)
=>a+2=3k+1(ko chia hết cho 3)
=>Vậy trong 3 số chỉ có duy nhất 1 số a+1 chia hết cho 3
TH3 (làm tương tự nha bạn)
b,Tick rồi mình làm tiếp cho
Chứng tỏ rằng trong hai số tự nhiên chẵn liên tiếp thì luôn có một và chỉ một số chia hết cho 4(xét hai số tự nhiên chẵn liên tiếp a=2k và a+2=2k+2 ( với k thuộc n) rồi xét trường hợp k là số chẵn k là số lẻ)
Chứng tỏ rằng: Trong hai số tự nhiên chẵn liên tiếp, có một và chỉ một số chia hết cho 4.
(Chú ý: Các bài toán chứng tỏ luôn dùng dạng tổng quát.)
gọi 2 số chẵn tự nhiên liên tiếp là a,a+2
nếu a chia hết cho 4 thì bài toán dc giải
a=4k+2 thì 4+2=4k+4 chia hết cho 4
gọi n là tn số chẵn thì
nếu \(n:4\)dư 2 thì n +2 chia hết cho 4
còn n+2 chia 4 dư 2 thì n chia hết cho 4
Trong hai số chẵn lien tiếp là bội của 2
Mà:2.2=4
=>Nên trong hai số chẵn liên tiếp có một số chia hết cho 4
bài1:chứng tỏ rằng:
A, trong 3 số tự nhiên liên tiếp có 1 và chỉ có 1 số chia hết cho3
B, trong 2 số tự nhiên chẵn liên tiếp có 1 và chỉ có một số chia hết cho 4
Gọi 3 STN liên tiếp là : a,a+1,a=2(a thuộc N )
Khi chia a cho 3 thì a sẽ có dạng 3k,3k+1,3k+2(k thuộc N )
+ Nếu a=3k thì a : 3 ( thay : cho chia hết )
a+1 :/ 3 ( thay :/ cho ko chia hết )
a+2:/3
+Nếu a=3k+1 thì a:/ 3
a+1 =3k+1+1=3k+2 :/ 3
a+2=3k+2+1= 3k+3:3
+ Nếu a=3k+2 thì a:/3
a=3k+1=3k+1+2=3k+3:3
a=3k+2=3k+2+2=3k+a:/3
Vậy ...................................
Nhớ câu kia cũng tương tự vậy mà làm
Chứng tỏ rằng:
a trong 2 số tự nhiên liên tiếp có một số chia hết cho 2
b Trong 3 số tự nhiên liên tiếp có một số chia hết cho 3
c Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
d Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
e Tích của hai số chẵn liên tiếp chia hết cho 8
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
Có ai muốn làm bạn tình cùng tôi ko