Chứng minh rằng : (xm + xn + 1) chia hết cho x2 + x +1 khi và chỉ khi (mn -2) chia hết cho 3
Chứng minh rằng xm xn 1 chia hết cho x2 x 1 khi và chỉ khi mn−2chia hết cho 3.Áp dụng phân tích thành nhân tử x7 x2 1
Bài mới
Chứng minh rằng : [ xm + xn + 1 ] chia hết cho x2 + x +1. khi và chỉ khi [ mn - 2 ] chi hết cho 3
\(\left(mn-2\right)⋮3\Rightarrow mn\) chia cho 3 dư 2
Đặt \(m=3k+r;n=3p+q\left(p;q;r;k\in N;r\ne q;1\le r;q\le2\right)\)
Vì m;n bình đẳng nên giả sử \(m\ge n\) \(\Rightarrow r\ge q\Rightarrow r=1;q=2\)
Ta có : \(x^m+x^n+1=x^{3k+1}+x^{3p+2}+1\)
\(=\left(x^{3k+1}-x\right)+\left(x^{3p+2}-x^2\right)+\left(x^2+x+1\right)\)
\(=x\left(x^{3k}-1\right)+x^2\left(x^{3p}-1\right)+\left(x^2+x+1\right)\)
Ta thấy \(x\left(x^{3k}-1\right)+x^2\left(x^{3p}-1\right)⋮x^3-1⋮x^2+x+1\)
\(\Rightarrow\)\(x\left(x^{3k}-1\right)+x^2\left(x^{3p}-1\right)+\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)
Hay \(x^m+x^n+1⋮x^2+x+1\)
Chứng minh rằng: (xm + xn + 1 ) chia hết cho x2 + x + 1 khi và chỉ khi (mn - 2) chia hết cho 3 áp dụng phân tích đa thức thành nhân tử x7 + x2 + 1
chứng minh rằng : ( xm+xn+1)chia hết cho x2 +x+1 .
Khi và chỉ khi ( mn - 2 ) chia hết cho 3
Áp dụng phân tích đa thức thành nhân tử : x7+ x2+1
Chứng minh rằng (xm+xn+1) chia hết cho x2+x+1 khi và chỉ khi (mn-2) chia hết cho 3
Aps dụng phân tích đa thức phân tích thành nhân tử x7+x2+1
Đặt \(m=3k+r\)với \(0\le r\le2\) \(n=3t+s\)với \(0\le s\le2\)
\(\Rightarrow x^m+x^n+1=x^{3k+r}+x^{3t+s}+1=x^{3k}+x^r-x^r+x^{3t}x^s-x^s+x^r+x^s+1\)
\(=x^r\left(x^{3k}-1\right)+x^s\left(x^{3t}-1\right)+x^r+x^s+1\)
Ta thấy : \(\left(x^{3k}-1\right)⋮\left(x^2+x+1\right)\)và \(\left(x^{3t}-1\right)⋮\left(x^2+x+1\right)\)
Vậy : \(\left(x^m+x^n+1\right)⋮\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^r+x^s+1\right)⋮\left(x^2+x+1\right)\)với \(0\le r;s\le2\)
\(\Leftrightarrow\hept{\begin{cases}r=2\\r=1\end{cases}}\)và\(\hept{\begin{cases}s=1\\s=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m=3k+2\\m=3k+1\end{cases}}\)và\(\hept{\begin{cases}n=3t+1\\n=3t+2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\\mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\end{cases}}\)
\(\Leftrightarrow\left(mn-2\right)⋮3\)Điều phải chứng minh
Áp dụng : \(m=7;n=2\Rightarrow mn-2=12:3\)
\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^7+x^2+1\right):\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)
Cho n số nguyên X1; X2; X3;...;Xn trong đó mỗi số chỉ là 1 hoặc -1. Chứng minh rằng nếu X1.X2+X2.X3+...+Xn-1.Xn+Xn.X1=0 thì n chia hết cho 4
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
Bài 1: cho f(x) là đa thức với hệ số hữu tỉ. chứng minh rằng:
a, nếu f(x3) chia hết cho x-1 thì f(x3) chia hết cho x2 + x+1
b. chứng minh tổng quát nếu f(xn) chia hết cho x-1 thì f(xn) chia hết cho xn-1 + xn-2 +...+ x+1
Bài 2 chứng minh rằng xn -1 chia hết cho xm-1 khi và chỉ khi n chia hết cho m
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm
\(n^2+n+3=n\left(n+1\right)+3\)
Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ
Vậy n^2+n+3 ko chia hết cho 2