Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
꧁WღX༺
Xem chi tiết
HUN PEK
Xem chi tiết
Phạm Thị Thùy Linh
3 tháng 5 2019 lúc 21:50

a, \(x^4+2013x^2+2012x+2013\)

\(=x^4+2013x^2-x+2013x+2013\)

\(=\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)

\(=x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left\{x\left(x-1\right)+2013\right\}\)

\(=\left(x^2+x+1\right)\left(x^2-x+2013\right)\)

Luongg
Xem chi tiết
Pham Van Hung
23 tháng 8 2018 lúc 18:39

     \(2012x^2-x-2013=0\)

\(\Rightarrow2012x^2+2012x-2013x-2013=0\)

\(\Rightarrow2012x\left(x+1\right)-2013\left(x+1\right)=0\)

\(\Rightarrow\left(2012x-2013\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2012x-2013=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2013}{2012}\\x=-1\end{cases}}}\)

Chúc bạn học tốt.

Ngô Phương Linh
Xem chi tiết
Đoàn Trần Quỳnh Hương
15 tháng 12 2022 lúc 17:21

x4+2012x2+2012x+2012

=(x4-x)+(2012x2+2012x+2012)

=x(x3-1)+2012(x2+x+1)

=x(x-1) (x2+x+1) + 2012 (x2+x+1)

=(x2+x+1) [x(x-1)+2012]

=(x2+x+1) (x2-x+2012)

pham thanh tung
Xem chi tiết
nguyễn thị thương
31 tháng 12 2014 lúc 16:30

ta có:

x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1

                                        =(x^4+x^2+1)+2013(x^2+x+1)

                                       =(x^2+1)^2-x^2+2013(x^2+x+1)

                                       =(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)

                                       =(x^2+x+1)(x^2+x+2014)

Nguyễn Nhật Quỳnh Trang
24 tháng 3 2016 lúc 20:05

x4+2014x2+2013x+2014=(x4-x)+(2014x2+2014x+2014)

                                  =x(x-1)(x2+x+1)+2014(x2+x+1)

                                  =(x^2+x+1)(x2-x+2014)

Kim Jisoo
Xem chi tiết
Rinu
18 tháng 8 2019 lúc 12:00

x4+2012x2+2011x+2012

=(x4-x)+(2012x2+2012x+2012)

=x(x3-1)+2012(x2+x+1)

=x(x-1) (x2+x+1) + 2012 (x2+x+1)

=(x2+x+1) [x(x-1)+2012]

=(x2+x+1) (x2-x+2012)

Trí Tiên亗
1 tháng 9 2020 lúc 12:50

\(x^4+2012x^2+2011x+2012\)

\(=x^4-x+2012x^2+2012x+2012\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2012.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

Khách vãng lai đã xóa
Quách Trần Gia Lạc
Xem chi tiết
Hoàng Anh Thư
12 tháng 1 2018 lúc 21:26

x^4+2013x^2+2012x+2013

=(x^4-x)+(2013x^2+2013x+2013)

=x(x^3-1)+2013(x^2+x+1)

=x(x-1)(x^2+x+1)+2013(x^2+x+1)

=(x^2+x+1)(x^2-x+2013)

chúc bạn học tốt ^ ^

Hỏi Làm Giề
12 tháng 1 2018 lúc 21:26

\(x^4+2013x^2+2012x+2013\)

=\(x^4+2013x^2+2013x-x+2013\)

=\(\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)

=\(x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)

=\(x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^2-x+2013\right)\)

Tran Thi Xuan
Xem chi tiết
Đinh Đức Hùng
20 tháng 8 2017 lúc 12:56

1) \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left[\left(x^2+2x\right)+\left(x+2\right)\right]\)

\(=x\left(x+3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

2) \(x^4+2012x^2+2011x+2012\)

\(=\left(x^4-x\right)+\left(2012x^2+2012x+2012\right)\)

\(=x\left(x^3-1\right)+2012\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2012\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

Nguyễn Thị Bich Phương
Xem chi tiết
Nguyễn Văn Hải
4 tháng 12 2014 lúc 17:15

= x3 + y3 + z3 + 3x2yz + 3xy2z + 3xyz2 - x3 -y3 - z3

=3x2yz + 3xy2z + 3xyz2

= 3xyz( x + y + z)

Lê Thị Thảo
4 tháng 12 2014 lúc 20:05

b.

x^4+2012x^2+2012x-x+2012=

(x^4-x)+2012(x^2+x+1)=

x(x-1)(x^2+x+1)+2012(x^2+x+1)=

(x+2012)(x^2+x+1)

 

Vũ Văn Hùng
25 tháng 1 2017 lúc 11:22

làm sao ra vậy