cho a,b,c,d \(\in N\). Biết tích ab là số liền sau của tích cd và a+b=c+d.Chứng minh rằng a=b
Cho 3 số a,b,c,d.Biết tích ab là số liền sau của tích cd và a+b=c+d.Chứng minh rằng a=b
trường hợp : ab = cd + 1
ta có a+ b = c + d
=> b.(a+b) = b(c+d) => a.b + b 2 = bc + bd mà ab = cd + 1
nên cd + 1 + b 2 = bc + bd => bc - cd + bd - b 2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1
c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm
Trường hợp 2: ab = cd - 1: tương tự
Cho các số nguyên a,b,c,d.Biết tích ab là số liền sau của tích cd và a+b=c+d.Chứng minh rằng a=b.
Cho a,b,c,d\(\in\)Z biết tich ab là số liền sau cua tích cd và a+b=c+d.Chứng tỏ rằng a=b
Cho a, b, c, d thuộc N. Biết tích ab là số liền sau của tích cd và a+b=c+d. Chứng minh rằng a = b
Cho a, b, c, d thuộc N. Biết tích ab là số liền sau của tích cd và a+b=c+d. Chứng minh rằng a = b
cho a,b,c thuộc N . Biết tích ab là số liền sau của tích cd và a+b=c+d . Chứng minh rằng a=b
Từ a+b = c+d suy ra d = a+b-c
Vì tích ab liền sau của tích cd nên ab = cd + 1 hay ab - cd = 1
ab - c.(a+b-c) = 1
ab - ac - cb + c2 = 1
a.(b - c) - c.(b -c) = 1
(b-c) .(b+c) = 1
suy ra a-c = b-c ( vì cùng bằng 1 hoặc -1) suy ra a=b (DPCM)
Cho a, b, c thuộc Z. Biết tích ab là số liền sau của tích cd và a+b=c+d. Chứng minh rằng a=b
Cho a, b, c thuộc Z. Biết tích ab là số liền sau của tích cd và a+b=c+d. Chứng minh rằng a=b
Cho a, b, c, d \(\in\) Z. Biết tích ab là số liền sau của tích cd và a+b=c+d, chứng minh rằng a=b