Tính S=2^2010-2^2009-2^2008-...-2-1
Thực hiện phép tính
S=\(2^{2010}-2^{2009}-2^{2008}...-2-1\)
\(S=-\left(1+2+...+2^{2009}+2^{2010}\right)\)
\(-2S=2\left(1+2+...+2^{2009}+2^{2010}\right)\)
\(\Rightarrow-2S+S=-S=2+2^2+...+2^{2010}+2^{2011}-1-2-...-2^{2009}-2^{2010}\)
\(-S=2^{2011}-1\Rightarrow S=1-2^{2011}\)
S=22010 - 22009 - 22008 -...-2-1
=>2S=2 x 22010 - 2 x 22009 - 2 x 22008 -...-2 x 2 -2 x 1
2S=22011 - 22010 - 22009 - ... - 22 -2
=>S=1-22011
tính 2010*2010-2009*2009+2008*2008-........+2*2-1*1
Tính S=22010-22009-22008-...-2-1
Ta có: S = 22010 - 22009 - 22008 - ... - 2 - 1
= -(1 + 2 + ... + 22008 + 22009 + 22010)
Đặt A = 1 + 2 + ... + 22008 + 22009 + 22010
2A = 2 + 22 + ... + 22009 + 22010 + 22011
2A - A = 22011 - 1
=> S = - (22011 - 1)
tính 2010*2010-2009*2009+2008-.....+2*2-1*1
a) 2010/1+2009/2+2008/3+ ... +1/2010+2010 : 1+1/2+1/3+ ... +1/2010=
b) 1/2011+1/2010+1/2009+ ... +1/3+1/2 : 2010/1+2009/2+2008/3+ ... +1/2010=
tinh tong
a)s=1+(-2)+3+(-4)+.......+2009+(-2010)
b)s=1+(-2)+(-3)+4+5+6(-6)+(-7)+......+2008+2009+(-2010)
Thực hiện phép tính : \(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(S=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=1+2+...+2^{2008}+2^{2009}\)
\(\Rightarrow2A=2+2^2+..+2^{2010}\)
\(\Rightarrow A=2^{2010}-1\)
\(\Rightarrow S=2^{2010}-\left(2^{2010}-1\right)\)
\(\Rightarrow S=1\)
S = 22010 - 22009 - 22008 - ... - 2 - 1
S= 22010 - ( 22009 + 22008 + ... + 2 + 1 )
Đặt A = 22009 + 22008 + .... + 2 + 1
2A = 2 . ( 22009 + 22008 + .... + 2 + 1
2A = 22010 + 22009 + .... + 22 + 2
2A - A = 22010 + 22009 + ...... + 22 + 2 - 22009 - 22008 - .... - 2 - 1
A = 22010 - 1
Thay A vào S ta có :
S = 22010 - ( 22010 - 1 )
S = 22010 - 22010 + 1
S = 0 + 1
S = 1
Vậy S = 1
thực hiện phép tính
s = 2^2010 - 2^2009 - 2^2008 - ... -2 -1
tính tổng sau :\(c=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\)\(\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)