a) x thuộc BC(9,8) và x nhỏ nhất
tìm giá trị nhỏ nhất và lớn nhất a= /x-5/ - /x-7/ b= /125-x / +/x+ 65/
a) \(\left|x-5\right|-\left|x-7\right|=\left|x-5\right|-\left|x-5-2\right|\ge\left|x-5\right|-\left(\left|x-5\right|-2\right)=2\)
Dấu \(=\)khi \(-2\left(x-5\right)\ge0\Leftrightarrow x\le5\).
b) \(\left|125-x\right|+\left|x+65\right|\ge\left|125-x+x+65\right|=190\)
Dấu \(=\)khi \(\left(125-x\right)\left(x+65\right)\ge0\Leftrightarrow-65\le x\le125\).
Với giá trị nào của x và y thì biểu thức A có giá trị nhỏ nhất?Giá trị nhỏ nhất đó bằng bao nhiêu? A= |x - 10| + |y + 100| - 2
Ta thấy: |x-10| >= 0 (1); |x-10| >= 0 (2)
Cộng 2 bđt cùng chiều (1) và (2) ta được: |x-10| + |x-10| >= 0 <=> A= |x-10| + |x-10| -2 >= -2
=> minA = -2
Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100
Chắc v!! =)))
MN GIÚP EM VỚI Ạ!! EM THANKS❤
a) Tìm số tự nhiên x lớn nhất để biểu thức:
A = (x-2022) . (x-2021) . (x-2020).....(x-2) . (x-1) có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao nhiêu ?
b) Tìm số tự nhiên x để biểu thức: B = (2018 + 2019 + 2020) : (x-2021) có giá trị lớn nhất và giá trị lớn nhất đó bằng bao nhiêu ?
a) *Xét x=0
==> Giá trị A=2022!(1)
*Xét 0<x≤2022
==> A=0(2)
*Xét x>2022
==> A≥2022!(3)
Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022
Mà để xmax ==> x=2022
Vậy ...
b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)
Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất
Mà x-2021≠0 =>x-2021=1==>x=2022
Khi đó Bmax=6057
Vậy...
1. Cho x,y là các số nguyên có 3 c/s
Tìm x và y để
a) x+y có giá trị nhỏ nhất
b) x+y = 500
c) x-y có gt lớn nhất
d) -x-y có gt nhỏ nhất
2. Cho /x/ = 11 và /y+1/=15
a) tìm x và y
b) Tìm x-y và y-x
3. cho /x/+/y/=13
a) Tìm x+y
b) Tìm x-y
BÀI 2:
\(\left|x\right|=11\)\(\Rightarrow\)\(x=\pm11\)
\(\left|y+1\right|=15\)\(\Rightarrow\)\(\orbr{\begin{cases}y+1=15\\y+1=-15\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y=-14\\y=-16\end{cases}}\)
1. Cho x,y là các số nguyên có 3 c/s
Tìm x và y để
a) x+y có giá trị nhỏ nhất
b) x+y = 500
c) x-y có gt lớn nhất
d) -x-y có gt nhỏ nhất
2. Cho /x/ = 11 và /y+1/=15
a) tìm x và y
b) Tìm x-y và y-x
3. cho /x/+/y/=13
a) Tìm x+y
b) Tìm x-y
tình giá trị nhỏ nhất và giá trị lớn nhất của biêu thức A=27-12x/x2+9
\(A=\frac{27-12x}{x^2+9}\)
\(A=\frac{x^2-12x+36-x^2-9}{x^2+9}\)
\(A=\frac{\left(x-36\right)^2-\left(x^2+9\right)}{x^2+9}\)
\(A=\frac{\left(x-36\right)^2}{x^2+9}-\frac{x^2+9}{x^2+9}\)
\(A=\frac{\left(x-36\right)^2}{x^2+9}-1\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=36\)
Tổng giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) = (x-6) x 2 + 4 trên đoạn [0;3] có dạng a - b c với a là số nguyên và b, c là các số nguyên dương. Tính S = a + b + c.
A. 4
B. -2
C. -22
D. 5
Chọn A
Hàm số f(x) = (x-6) x 2 + 4 xác định và liên tục trên đoạn [0;3].
Suy ra
với a là số nguyên và b, c là các số nguyên dương nên
a = - 12, b = 3, c = 13. Do đó: S = a + b + c = 4.
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x ) = 2 x - 4 6 - x trên đoạn [-3;6]. Tổng M + m có giá trị là
A. 18
B. -6
C. -12
D. -4
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=x+\sqrt{4-x^2}\)
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2