cho phép toán như sau a*b=a^b+b^a (với a,b là các số nguyên dương)
Biết 2^ax=100.Tìm x
giúp mình nha
Cho phép toán * sau đây: a*b= ab+ba với a,b là các số nguyên dương
Biết 2*x=100. Tìm x
Ta có : 2*x=\(2^x+x^2\)=100 \(\Rightarrow\)x\(^2\)\(\le\)99
Vì \(2^x\)là số chẵn , 100 cũng là số chẵn
\(\Rightarrow\)\(x^2\)cũng là số chẵn \(\Rightarrow\)2\(\le\)x\(\le\)8
Ta thử lần lượt các trường hợp thì thấy x=6 thì hợp lí
Vậy x=6
1) Cho M=-5x^2y
Tìm các cặp số nguyên (x,y) để M=-160
2) Cho phép toán như sau:a.b=a^b+b^a
(Với a,b là các số nguyên dương)
Biết 2*x=100.Tìm x.
cho phép toán sau: a*b = ab +ba (vs a,b là các số nguyên dương) , biết 2ax = 100
tìm x
Cho phép toán * như sau: a*b=a^b+b^a với a, b là số nguyên dương
Lưu ý: * là dấu sao
Cho hai số nguyên dương \(a;b\) với \(b>1\) và thỏa mãn điều kiện \(A=\dfrac{a^2}{2.a.b^2-b^3+1}\) là số nguyên dương. Chứng minh rằng \(A\) là số chính phương.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
\(\dfrac{a^2}{2ab^2-b^3+1}=m\in Z^+\Rightarrow a^2-2mb^2a.+mb^3-m=0\)
\(\Rightarrow\Delta=4m^2b^4-4mb^3+4m\) là SCP (1)
Ta dễ dàng chứng minh được:
\(4m^2b^4-4mb^3+4m>\left(2mb^2-b-1\right)^2\)
\(\Leftrightarrow4m\left(b^2+1\right)>\left(b+1\right)^2\)
Đúng do: \(2m.2\left(b^2+1\right)\ge2m\left(b+1\right)^2>\left(b+1\right)^2\)
Tương tự, ta cũng có: \(4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)
\(\Leftrightarrow\left(b-1\right)^2+4m\left(b^2-1\right)>0\) (luôn đúng với b>1;m>0)
\(\Rightarrow\left(2mb^2-b-1\right)^2< 4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)
\(\Rightarrow4m^2b^4-4mb^3+4m=\left(2mb^2-b\right)^2\)
\(\Rightarrow b^2=4m\)
\(\Rightarrow b\) chẵn \(\Rightarrow b=2k\Rightarrow m=k^2\)
Thế vào (1) \(\Rightarrow a^2-8k^4a+8k^5-k^2=0\)
\(\Leftrightarrow\left(a-k\right)\left(a-8k^4+k\right)=0\Rightarrow\left[{}\begin{matrix}a=k\\a=8k^4-k\end{matrix}\right.\)
Vậy nghiệm của pt là: \(\left(a;b\right)=\left(k;2k\right);\left(8k^4-k;2k\right)\) với k nguyên dương
Cho a;b là các số nguyên dương sao cho (a;b)=1. Chứng minh rằng N0=ab−a−bN0=ab−a−b là số nguyên lớn nhất không biểu diễn được dưới dạng ax+by với x;y là các số nguyên không âm.
Mở rộng: Chứng minh giữa 2 số nguyên n, N0−nN0−n, có đúng một trong hai số biểu diễn được dưới dạng ax+by với x, y là các số nguyên không âm.(Định lý Sylvester tem thư)
Chứng minh cụ thể giùm mình nha
1) Tìm số nguyên a,b biết: a^3+b^3=1216 và phân số a/b rút gọn được thành 3/5
2) Viết các phân số tối giản a/b với a,b là các số nguyên dương với a*b=100
3) Tìm các số tự nhiên a,b biết rằng a/b=132/143 và BCNN a,b=1092
4) Chứng tỏ các phhaan số sau đều là tối giản:
a) 2n+1/4n+8 ( n khác -2) ; b) 3n+2/5n+3 ( mọi n thuộc số nguyên ) ; c) n+1/2n
Tất cả các số nguyên lớn hơn 2 đều là tổng của 3 số nguyên tố
Bài toán như sau: Hãy điền những chữ số thích hợp vào dạng định lý FLT dưới đây
Ax + By = Cz. Bằng điều kiện A, B, C, x, y, z đều là các số nguyên dương trong đó x, y, z lớn hơn 2 còn A, B, C có cùng bội số chung nhỏ nhất.
cho phép toán * thỏa mãn: với hai số tự nhiên a và b có: a*b=3a+b^a. Tìm các số nguyên tố x,y sao cho 2*x+y*4-8 cũng là số nguyên tố