tìm số nguyên tố p ,q
sao cho p+4 và p+10 là số nguyên tố
sao cho q+2 và q+8 là số nguyên tố
có bài toán xin hỏi mọi người trả lời giúp, theo mình bài toán này bị sai:
a, Tìm số nguyên tố P sao cho P+4, P+10 là số nguyên tố
b, Tìm số nguyên tố Q sao cho Q+2, Q+8 là số nguyên tố
Giúp mình với!
1.CMR nếu 8p-1 và p là số nguyên tố thì 8p+1 là hợp số.
2.Tìm tất cả các số nguyên tố p và q sao cho 7p+q và pq+11 đều là số nguyên tố.
3.Tìm số nguyên tố p sao cho:
a) 3p+5 là số nguyên tố.
b) p+8 và p+10 đều là số nguyên tố.
4.CMR 1994100-1 và 1994100+1 không thể đồng thời là số nguyên tố.
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^{n-1}\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
tìm số nguyên tố p sao cho:
a,p+2 và p+4 là số nguyên tố
b,p+10 à p+14 là số nguyên tố
c,p+2;p+6 và p+8 là số nguyên tố
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất