Tính
\(B=\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times...\times\left(1+\frac{1}{1999}\right)\times\left(1+\frac{1}{2000}\right)\)
Tính nhanh:
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times.......\times\left(1-\frac{1}{2003}\right)\times\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{2003}{2004}\)
\(=\frac{1\times2\times3\times...\times2003}{2\times3\times4\times...\times2014}\)
\(=\frac{1}{2014}\)
tính các tích sau
\(a=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...\times\frac{9999}{10000}\)
\(b=\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{9}\right)\times...\times\left(1-\frac{1}{10000}\right)\)
\(c=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(d=\left(1+\frac{1}{1\times3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times...\times\left(1+\frac{1}{99\times100}\right)\)
\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)
\(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)
\(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)
\(=100.\frac{2}{101}\)\(=\frac{200}{101}\)
\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)
\(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)
\(=\frac{1}{1994}\) (Giản ước còn lại như này)
Tìm tích:
1.\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times...\times\left(\frac{1}{999}+1\right)\)
2.\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1000}-1\right)\)
3.\(\frac{3}{2^2}\times\frac{8}{3^2}\times\frac{15}{4^2}\times...\times\frac{99}{10^2}\)
biết làm bài 1 thôi
\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)
= \(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)
lượt bỏ đi còn :
\(\frac{1000}{2}=500\)
Tính P = \(\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times\left(1+\frac{1}{4\times6}\right)\times...\times\left(1+\frac{1}{2009\times2011}\right)\)
(1+\(\frac{1}{3}\)) x (1+\(\frac{1}{2x4}\)) x(1+\(\frac{1}{3x5}\))x(1+\(\frac{1}{4x6}\)) x .....x (1+ \(\frac{1}{2009x2011}\))
= \(\frac{2}{1x3}\)x \(\frac{2}{2x4}\)x \(\frac{2}{3x5}\)x \(\frac{2}{4x6}\)x....x \(\frac{2}{2009x2011}\)
= ..................
đến đây tự làm nhé
Tính giá trị biểu thức: A=\(\frac{\left(1+17\right)\times\left(1+\frac{17}{2}\right)\times\left(1+\frac{17}{3}\right)....\left(1+\frac{17}{19}\right)}{\left(1+19\right)\times\left(1+\frac{19}{2}\right)\times\left(1+\frac{19}{3}\right)....\left(1+\frac{19}{17}\right)}\)
Tính nhanh
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times......\times\left(1-\frac{1}{2003}\right)\times\left(1-\frac{1}{2004}\right)\)
Giúp mk với
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot....\cdot2002\cdot2003}{2\cdot3\cdot4\cdot5\cdot....\cdot2003\cdot2004}\)
\(=\frac{1}{2004}\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}=\frac{1\cdot2\cdot3\cdot4....2003}{2\cdot3\cdot4\cdot5....2004}=\frac{1}{2004}\)
Hai chị Lan và Cúc rủ nhau đi siêu thị mua sắm..Sau khi chị Lan tiêu hết 1/3 số tiền của mình,chị cúc tiêu hết 2/5 số tiền của minh thì số tiền của 2 chị bằng nhau.Hỏi lúc đầu mỗi chị có bao nhiêu tiền,biết ban đàu chị Cúc hơn chị Lan lf 120.000 đồng
tính :\(\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times_{......}\times\left(1+\frac{1}{98}\right)\times\left(1+\frac{1}{99}\right)\)
Ta đặt A = giá trị biểu thúc trên
A =3/2 * 4/3 * ....*99/98 *100/99
A = 100/2 =50
Vậy giá trị của biểu thức trên =50
tính \(A=\frac{1}{2}\times\left(1+\frac{1}{1\times3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times...\times\left(1+\frac{1}{2015\times2017}\right)\)
\(A=\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)\(A=\frac{1}{2}\left(\frac{1\cdot3+1}{1\cdot3}\right)\left(\frac{2\cdot4+1}{2\cdot4}\right)...\left(\frac{2015\cdot2017+1}{2015\cdot2017}\right)\)
\(A=\frac{1^2}{2}\cdot\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\cdot\cdot\frac{2016^2}{2015\cdot2017}\)
\(A=\frac{1^2\cdot2^2\cdot3^2\cdot\cdot\cdot2016^2}{2\cdot1\cdot3\cdot2\cdot4\cdot\cdot\cdot2015\cdot2017}\)
\(A=\frac{2016}{2017}\)
Kết quả của phép tính:
\(\left(-2\right)\times\left(-1\frac{1}{2}\right)\times\left(-1\frac{1}{3}\right)..........\times\left(-1\frac{1}{2009}\right)\times\left(-1\frac{1}{2010}\right)\)