tìm n biết 5n+7 chia hết cho 3n+2
cmr: Nếu 8p-1 và p là các số nguyên tố thì 8p+1 là hợp số
1, Tìm n bt 5n +7 chia hết cho 3n+2
2, CMR : Nếu 8p - 1 và p là các số nguyên tố thì 8p + 1 là hợp số.
3, cmr : 10^2011 + 8 chia hết cho 72.
Ai giúp mình vs
Tìm n biết : 5n + 7 chia hết chọn 3n + 2
CMR : nếu 8p - 1 và p là SNT thì 8p + 1là hợp số
3n+2 chia hết cho 3n+2
=>2.(3n+2)=6n+4 chia hết cho 3n+2
Vì 5n+7 chia hết cho 3n+2 và 6n+4 chia hết cho 3n+2
=>6n+4-(5n+7)=n-3 chia hết cho 3n+2
n-3 chia hết cho 3n+2
=>3.(n-3)=3n-9=3n+2-11chia hết cho 3n+2
Vì 3n+2-11 chi hết cho 3n+2 và 3n+2 chia hết cho 3n+2
=> -11 chia hết cho 3n+2
=>3n+2 thuộc Ư(-11)
=>3n+2={1;-1;-11;11}
=>3n={-1;-3;-13;9}
=>n={-1/3;-1;-13/3;3}
Nếu p=2
8p-1=16-1=15 là hợp số trái với đề(TVĐ)
Nếu p=3
8p-1=8.3-1=24-1=23
8p+1=8.3+1=24+1=25 là hợp số
Nếu p>3
TH1:p=3k+1(vì p là số nguyên tố)
8p-1=8.(3k+1)-1=24k+8-1=24k+7
8p+1=8.(3k+1)+1=24k+8+1=24k+9 là hợp số
TH2:p=3k+2
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) chia hết cho 3
Mà p>3
=>8p-1>3
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) là hợp số(TVĐ)
Vậy nếu 8p - 1 và p là SNT thì 8p + 1là hợp số
3n+2 chia hết cho 3n+2
=>2.(3n+2)=6n+4 chia hết cho 3n+2
Vì 5n+7 chia hết cho 3n+2 và 6n+4 chia hết cho 3n+2
=>6n+4-(5n+7)=n-3 chia hết cho 3n+2
n-3 chia hết cho 3n+2
=>3.(n-3)=3n-9=3n+2-11chia hết cho 3n+2
Vì 3n+2-11 chi hết cho 3n+2 và 3n+2 chia hết cho 3n+2
=> -11 chia hết cho 3n+2
=>3n+2 thuộc Ư(-11)
=>3n+2={1;-1;-11;11}
=>3n={-1;-3;-13;9}
=>n={-1/3;-1;-13/3;3}
A,Tính giá trị bt:
2010^2010.(710:78-3.24-2^2010:2^2010)
b, so sánh: 3^210 và 2^350
Bai2:a, tìm n biết : 5n+7 chia hết cho 3n+2.
b,Cmr: nếu 8p-1 và p là các số nguyên tố thì 8p+1 là hợp số
c,CMR: 10^2011+8 chia hết cho 72.
Các bạn giúp mình nhé . Ai làm đúng và nhanh mình sẽ like cho mình còn nhờ bạn bè của mình like cho nữa
bài 2 câu b,:Cũng thế nhưng xét trực tiếp 3 số khác:
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
Biết mỗi bài đó thôi
a, Cho p và 8p-1 là các số nguyên tố. Chứng tỏ rằng 8p+1 là hợp số ?
b, Tìm số nguyên n sao cho 6n+3 chia hết cho 3n+6 ?
b) Ta có
\(\frac{6n+3}{3n+6}=\frac{6n+12-9}{3n+6}=\frac{2.\left(3n+6\right)-9}{3n+6}=2-\frac{9}{3n+6}\)
3 n + 6 là ước nguyên của 9
\(3n+6=1\Rightarrow n=-\frac{5}{3}\)(loại)
\(3n+6=3\Rightarrow n=-1\)( chọn )
\(3n+6=9\Rightarrow n=1\)( chọn )
\(3n+6=-1\Rightarrow n=-\frac{7}{3}\)( loại )
\(3n+6=-3\Rightarrow n=-3\)( chọn )
\(3n+6=-9\Rightarrow n=-5\)( chọn )
KL : \(n\in\){ 1; -1; -3; -5 }
Ai thấy đúng thì ủng hộ nha!!
CMR:
a) Nếu b là số nguyên tố khác 3 thì A=3n+2+2014b2 là hợp số với mọi số tự nhiên n
b) Nếu p và 8p2+1 là các số nguyên tố thì 8p2+2p+1 là số nguyên tố
c) Nếu k là số tự nhiên lớn hơn 1 thỏa mãn k2+4 và k2+16 là các số nguyên tố thì k chia hết cho 5
1,tìm n biết 5n+7chia hết cho 3n+2
2,tìm số tự nhiên n sao cho tổng A=1!+2!+3!+....+n! là một só chính phương
3,CMR:mếu 8p-1 và p là các số nguyên tố thì8p+1là hợp số
mọi người giúp mình với nha
1/ tìm số nguyên n biết 3n+2 chia hết cho n+1
2/ tìm số nguyên x,y biết 5/x-y/3=1/6
3/ a- cho ababablà số có 6 chữ số chứng tỏ ababab là bội của 3
b-cho S=5+5^2+5^3+......+5^2004 chứng tỏ rằng S chia hết cho 26 và 126
4/ tìm số tự nhiên x biết
a- x+(x+1)+(x+2)+......+(x+2010_=2029099
b-2+4+6+8+.....+2x=210
c-(x-2)^6=(x-2)^8
7/a- tìm số tự nhiên n biết 5n+7 chia hết cho 3n+2
b-chứng minh rằng nếu 8p-1 và p là các số nguyên tố thì 8p+1 là hợp số
Bài 1 :
\(\frac{3n+2}{n+1}=\frac{3\left(x+1\right)-1}{n+1}=\frac{-1}{n+1}\)
=> n + 1 \(\in\)Ư(-1) = {1;-1}
Tự lập bảng xét giá trị bn nhé !
Bài 2 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow30=x\left(1+2y\right)\)
Tự lập bảng nhé !
ok bạn nhưng mấy bài kia
giải hộ mình
k k
1) Tìm x biết : 2x + 7 chia hế cho x+1
2) Chứng tỏ nếu p và 8p-1 là số nguyên tố thì 8p+1 là hộp số
1: Chứng minh rằng: nếu 8p-1 và p là số nguyên tố thì 8p+1 là hợp số.
2: Tìm tất cả các số nguyên tố p, q sao cho 7p +q và pq +11 đều là số nguyên tố.
1.ta có: 8p-1 là số nguyên tố (đề bài)
8p luôn luôn là hợp số
ta có: (8p-1)8p(8p+1) chia hết cho 3
từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs