Tính hợp lí \(\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}\)
\(A=\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}+\frac{141}{143}\)
A = \(\frac{1}{3}+\frac{13}{35}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}+\frac{141}{143}\)
\(=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=6-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=6-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-1+\frac{1}{13}\)
\(=5+\frac{1}{13}\)
\(=\frac{66}{13}\)
\(\text{Vậy }A=\frac{66}{13}\)
Bài 1: Tính nhanh:
\(\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}=?\)
GIẢI ĐẦY ĐỦ GIÙM MÌNH!
CÁC BẠN LÀM ĐÚNG NHƯNG KHÔNG ĐẦY ĐỦ NÊN MÌNH KHÔNG TICK!~
mình không biết nữa bằng bao nhiêu ấy nhỉ .......? .......? Sory ^.^
1/3 + 13/15 + 33/35 + 61/63 + 97/99
= 45/11 ( mình không tiện giải, để khi khác giải sau)
Chúc bạn may mắn!
= 45/11
mik làm biếng ghi lâu lắm bạn ạ !!!
k mik nhaaaaaaaaaaaaaaaaaaaaaa
\(A=\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}+\frac{141}{143}+\frac{193}{195}\)
Chứng tỏ rằng A không là số nguyên.
Ta có: \(A=\frac{3-2}{3}+\frac{15-2}{15}+\frac{35-2}{35}+\frac{63-2}{63}+\frac{99-2}{99}+\frac{143-2}{143}+\frac{195-2}{195}\)
\(A=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)+\left(1-\frac{2}{195}\right)\)
\(A=7-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\right)\)
\(A=7-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(A=7-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(A=7-\left(1-\frac{1}{15}\right)=7-1+\frac{1}{15}=6\frac{1}{15}\)không là số nguyên
1) Tính
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
b)\(\left(\frac{15}{1\cdot2\cdot3}+\frac{15}{2\cdot3\cdot4}+\frac{15}{3\cdot4\cdot5}+.....+\frac{15}{18\cdot19\cdot20}\right)\cdot x=1\)
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33
\(b,\)\(\left(\frac{15}{1.2.3}+\frac{15}{2.3.4}+\frac{15}{3.4.5}+...+\frac{15}{18.19.20}\right).x=1\)
\(\left[\frac{15}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{15}{18.19.20}\right)\right].x=1\)
\(\left[\frac{15}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right].x=1\)
\(\left[\frac{15}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\right].x=1\)
\(\left[\frac{15}{2}.\frac{189}{380}\right].x=1\)
\(\frac{567}{152}.x=1\)
\(x=1-\frac{567}{152}\)
\(\Rightarrow x=-\frac{415}{152}\)
Tính hợp lí
B\(=\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+....+\frac{1}{195}\)
1/5.7+1/7.9+1/99.11+...+1/13.15
=1/2(2/5.7+2/7.9+...+2/13.15)
=1/2.(1/2-1/15)
=1/2.13/30
=13/60
ta có :
B = 1 / 5 x 7 + 1 / 7 x 9 + 1 / 9 x 11 + ... + 1 / 13 x 15
2 x B = 2 / 5 x 7 + 2 / 7 x 9 + 2 / 9 x11 + ... + 2 / 13 x 15
2 x B = 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1 /13 - 1/15
2 x B = 1/5 - 1/15
2 x B = 3 / 15 - 1/15
2 x B = 2/15
B = 2 / 15 : 2
B = 1/15
vậy B = 1/15
B=1/5.7 +1/7.9 +1/9.11+...+1/13.15
= 1/2 .( 2/5.7+2/7.9+....+2/13.15)
=1/2 . ( 1/5-1/7+1/7-1/9+...+1/13-1/15)
=1/2. (1/5-1/15)
=1/2. 2/15 = 1/15
nha ^^
Bài 1: Tính bằng cách hợp lí nhất.
a.\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\)
b.\(\frac{30}{51}-\frac{20}{52}+\frac{14}{34}-\frac{56}{91}-2\)
c.\([\frac{1}{3}+\frac{12}{67}+\frac{13}{41}]-[\frac{79}{67}-\frac{28}{41}]\)
d.\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+...+\frac{2}{399}\)
Ai nhanh mik tick 3 cái, mik dg cần gấp
tính nhanh:
1/3 + 13/15 + 33/35 + 61/63 + 97/99 + 141/143
\(\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}\)\(+\frac{141}{143}\)
\(=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)\)\(+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)\)\(+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)\)
\(=\left(1+1+1+1+1+1\right)-\)\(\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=6-\)\(\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}+\frac{2}{11\times13}\right)\)
\(=6-\)\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-\frac{12}{13}\)
\(=\frac{66}{13}\)
Tính bằng cách hợp lí
\(\frac{1}{15}\)+\(\frac{1}{35}\)+\(\frac{1}{63}\)+\(\frac{1}{99}\)+ ....................+\(\frac{1}{2915}\)+\(\frac{1}{3135}\)
Đăt S=1/15+1/35+1/63+1/99+...+1/2915+1/3135
=1/3.5+1/5.7+1/7.9+1/9.11+...+1/53.55+1/55.57
=1/2(2/3.5+2/5.7+2/7.9+...+2/53.55+2/55.57)
=1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/53-1/55+1/55-1/57)
=1/2(1/3-1/57)
=1/2(19/57-1/57)
=1/2.18/57
=3/19
Vậy 1/15+1/35+1/63+1/99+...+1/2915+1/3135=3/19
Mik viết thế này mong bạn thông cảm nha!!
chúc bạn hok tốt!!
Bạn nhớ k cho mik một cái đúng nha!!
Đặt \(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{2915}+\frac{1}{3135}\)
\(\Leftrightarrow A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+....+\frac{1}{53\cdot55}+\frac{1}{55\cdot57}\)
\(\Leftrightarrow2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+...+\frac{2}{53\cdot55}+\frac{2}{55\cdot57}\)
\(\Leftrightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-....+\frac{1}{53}-\frac{1}{55}+\frac{1}{55}-\frac{1}{57}\)
\(\Leftrightarrow2A=\frac{1}{3}-\frac{1}{57}=\frac{6}{19}\)
\(\Leftrightarrow A=\frac{6}{19}:2=\frac{3}{19}\)
1/15 + 1/35 + 1/63 + 1/99 + ...+ 1/2915 + 1/3135
= 1/2.(2/15 + 2/35 + 2/63 + 2/99 + ... + 2/2915 + 2/3135)
=1/2.( 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + ... + 2/53.55 + 2/55.57)
=1/2.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/53-1/55+1/55-1/57)
=1/2.(1/3-1/57)
=1/2.6/19
=3/19
Tính hợp lí : \(B=\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}+\frac{4}{195}\)
\(B=\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}+\frac{4}{195}\)
\(B=2\cdot\left(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\right)\)
\(B=2\cdot\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(B=2\cdot\left(\frac{1}{5}-\frac{1}{15}\right)\)
\(B=2\cdot\frac{2}{15}\)
\(B=\frac{4}{15}\)
B = 4/35 + 4/63 + 4/99 + 4/143 + 4/195
B = 4/5.7 + 4/7.9 + 4/9.11 + 4/11.13 + 4/13.15
B = 4/2 . ( 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 + 2/13.15 )
B = 4/2 . ( 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 + 1/13 - 1/15 )
B = 4/2 . ( 1/5 - 1/15 )
B = 4/2 . 2/15
B = 4/15