\(\dfrac{2-x}{4}\)=\(\dfrac{3x-1}{-3}\)
Help me
\(a.\dfrac{5x-20}{3}-\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\)
b.\(\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
c.\(\dfrac{-1}{2x+3}< 0\)
CỨU MÌNH VỚI MỌI NGƯỜI MÌNH ĐANG CẦN GẤP MAI MINK KTR RỒI. HELP ME!!!!!!!!!!
a. có vấn đề
b.
\(\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
\(\Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-30\)
\(\Leftrightarrow-22x+5x< -30-5\)
\(\Leftrightarrow-17x< -35\)
\(\Leftrightarrow x>\dfrac{35}{17}\)
Tính giá trị biểu thức \(A=x^2-3x+1\) khi \(\left|x+\dfrac{1}{3}\right|=\dfrac{2}{3}\)
Help me
Giải:
Ta có:
|x+1/3|=2/3
⇒x+1/3=2/3 hoặc x+1/3=-2/3
x=1/3 hoặc x=-1
+)TH1: (nếu như có ngoặc)
Khi x=1/3:
A=(1/3)2-3.(1/3)+1
A=1/9
Khi x=-1
A=(-1)2-3.(-1)+1
A=5
+)TH2: (nếu x ko có ngoặc)
Khi x=-1
A=-12-3.-1+1
A=3
Trường hợp này chỉ có -1 vì 1/3 2 =1/9 ; còn ko có ngoặc hay có ngoặc còn tùy thuộc vào đề bài và cách suy nghĩ của bạn nhé!
Chúc bạn học tốt!
I : Giải các phường trình sau
a) \(\left(3x-2\right)\left(\dfrac{2\left(x+3\right)}{7}-\dfrac{4x-3}{5}\right)=0\)
b) \(\left(x-\dfrac{3}{4}\right)^2+\left(x-\dfrac{3}{4}\right)\left(x-\dfrac{1}{2}\right)=0\)
c) \(\dfrac{12}{9-x^2}+\dfrac{2}{x-3}+\dfrac{3}{x+3}=1\)
d) \(\dfrac{1}{x-1}+\dfrac{2}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
help me
Cho \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
Chứng minh rằng: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Help me, please!
Ta có: \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)
\(\Rightarrow12x-8y=6z-12x=8y-6z=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3},\dfrac{z}{2}=x,\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3},\dfrac{z}{4}=\dfrac{x}{2},\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) (đpcm)
Tham khảo tại đây nhé: Câu hỏi của Phong Tuấn Đỗ - Toán lớp 7 | Học trực tuyến
\(\dfrac{x^2+xy}{5x^2-5y^2}.\dfrac{3x^3-3y^3}{x^2-xy}\)
help me all bro
=\(^{\dfrac{-x^2-xy}{5\left(x^2-y^2\right)}}\).\(\dfrac{3\left(x^3-y^3\right)}{x^2-xy}\)
=\(\dfrac{-3\left(x-y\right)}{5}\)
\(\dfrac{2}{1²}\) . \(\dfrac{6}{2²}\) . \(\dfrac{12}{3³}\) . \(\dfrac{20}{4²}\) +....+ \(\dfrac{110}{10²}\) . x = -20
Help me
Sửa đề
\(\dfrac{2}{1^2}\cdot\dfrac{6}{2^2}\cdot\dfrac{12}{3^3}\cdot.......\cdot\dfrac{110}{10^2}\cdot x=-20\)
\(\dfrac{2}{1\cdot1}\cdot\dfrac{2\cdot3}{2\cdot2}\cdot\cdot\cdot\cdot\dfrac{11\cdot10}{10\cdot10}\cdot x=-20\)
\(\dfrac{\left(2\cdot3\cdot4\cdot....\cdot11\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot10\right)}\cdot\dfrac{\left(1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot10\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot10\right)}\cdot x=-20\)
\(11\cdot x=-20\\ x=-\dfrac{20}{11}\)
\(\dfrac{2x^3+5}{x^2-x+1}-\dfrac{x^3+4}{x^2-x+1}\)help me :(
= \(\dfrac{2x^3+5-x^3-4}{x^2-x+1}\) = \(\dfrac{x^3-1}{x^2-x+1}\)
\(\dfrac{2x^3+5 -x^3-4}{x^2-x+1}=\dfrac{x^3+1 }{x+1}\)
câu này luôn \(\dfrac{2x^2y^5}{xy^2z}-\dfrac{4x^2y^3}{xy^2z}\)
Xét sự biến thiên của hàm số sau:
1, \(y=4-3x\)
2, \(y=x^2+4x-5\)
3, \(y=\dfrac{x}{x-1}trên\left(-\infty;1\right)\)
4, \(y=\dfrac{2}{x-2}trên\left(-\infty;2\right)vàtrên\left(2;+\infty\right)\)
Hi guys, please help me :))))
I need it now !!!!
1 nghịch biến(a<0)
2 đồng biến
3,4 thay các g trị tm đk vào
hojk tốt
Help me... Giup đk chừng nào hay chừng đó ạ.
Bài 1:a, \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
b, \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
c,\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)
d,\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\)
e,\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\)
f,\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
g,\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)
h,\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
i,\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\)
j,\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\)
\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\left(ĐKXĐ:x\ne\pm1\right)\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Rightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\Rightarrow x=1\left(loại\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={0}.
b)
\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(x+2\right)^2+3-2x=x^2+10\\ \Leftrightarrow x^2+4x+4-2x-x^2=10-3\)
\(\Leftrightarrow2x+4=7\Leftrightarrow2x=7-4=3\Rightarrow x=\dfrac{3}{2}\left(loại\right)\)
vậy phương trình đã cho vô nghiệm.
c)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\left(ĐKXĐ:x\ne\pm5\right)\)
\(\Leftrightarrow\dfrac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)^2}{\left(x+5\right)\left(x-5\right)}=\dfrac{20}{\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)
\(\Leftrightarrow x^2+25x+25-x^2+25x-25=20\\ \Leftrightarrow50x=20\Rightarrow x=\dfrac{2}{5}\)
vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{2}{5}\right\}\)
d)\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\left(ĐKXĐ:x\ne\pm\dfrac{2}{3}\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\\ \Leftrightarrow9x^2+12x+4-18x+12-9x^2=0\\ \Leftrightarrow16-6x=0\Leftrightarrow6x=16\Rightarrow x=\dfrac{16}{6}\)
vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{16}{6}\right\}\)
e)\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\left(ĐKXĐ:x\ne\dfrac{1}{5};\dfrac{3}{5}\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(3\left(3-5x\right)+2\left(5x-1\right)=4\\ \Leftrightarrow9-15x+10x-2=4\\ \Leftrightarrow-5x=-3\Rightarrow x=\dfrac{3}{5}\left(loại\right)\)
vậy phương trình đã cho vô nghiệm.
f)
\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\left(ĐKXĐ:x\ne\pm\dfrac{1}{4}\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(-3\left(4x+1\right)=2\left(4x-1\right)-8-6x\\ \Leftrightarrow-12x-3=8x-2-8-6x\\ \Leftrightarrow-14x=-7\Rightarrow x=\dfrac{1}{2}\)
vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{1}{2}\right\}\)
g)
\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(ĐKXĐ:y\ne\pm2\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(y-1\right)\left(y+2\right)-5\left(y-2\right)=12+y^2-4\\ \Leftrightarrow y^2+y-2-5y+10=12+y^2-4\\ \Leftrightarrow-4y+8=8\Leftrightarrow-4y=0\Rightarrow y=0\)
vậy phương trình có tập nghiệm là S={0}
h)
\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\left(ĐKXĐ:x\ne\pm1\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow x^2+2x+1-x^2+2x-1=4\\ \Leftrightarrow4x=4\Rightarrow x=1\)
vậy phương trình có tập nghiệm là S={1}.
i)
\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(2x-3\right)\left(x-2\right)-\left(x+2\right)=2\\ \Leftrightarrow2x^2-7x+6-x^2-4x-4=2\\ \Leftrightarrow x^2-11x=0\Rightarrow\left[{}\begin{matrix}x=0\\x-11=0\Rightarrow x=11\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={0;11}
j)
\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\left(ĐKXĐ:x\ne\pm2\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(x-1=-3\left(x+2\right)\Leftrightarrow x-1=-3x-6\\ \Leftrightarrow4x=5\Rightarrow x=\dfrac{5}{4}\)
vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{5}{4}\right\}\)