tìm x biết (1/2 + 1/3 + 1/4 + .... + 1/2014 ) . x = 2013/1 + 2012/2 + ...+ 1/2013
Tìm x biết (2012/1+2011/2+...+1/2012)/(1/2+1/3+...+1/2013):x=-2013/2014
Tìm x biết a |3-2x|=x+1
b (1/2+1/3+...+1/2014)×x=2013/1+2012/2+...+2/2012+1/2013
Tìm x biết: (1/2+1/3+1/4+...+1/2014).x =2013/1+2012/2+2011/3+...+2/2012+1/2013
trước tiên bạn phải tính:
2013/1+2012/2+2011/3+.....+2/2012+1/2013
=1+2012/2)+(1+2011/3)+.....+(1+2/2012)+(1+1/2013) +1 {BƯỚC NÀY TÁCH 2013 RA LÀM 2013SỐ1 ĐỂ CÔNG VS CÁC THỪA SỐ CÒN LẠI}
=2014/2+2014/3+...+2014/2012+2014/2013+2014/2014
=2014.(1/2+1/3+....+1/2012+1/20131/2014
suy ra x=2014
Tìm x biết:
(1 + 1/2 + 1/3 +...+ 1/2013) . x + 2013= 2014/1+2015/2+... + 4025/2012 + 4026/2013
tìm x biết:
a) (x+2)^2 + 2.(y-3)^2 < 4
b, ( 1/2 + 1/3+... + 1/2014) x=2013/1 +2012/2+....+2/2012+1/2013
Tìm x bk :
( 1/2 + 1/3 + ... + 1/2014) x = 2013/1 + 2012/1 + ... + 2/2012 + 1/2013
Tìm x: (1+1/2+1/3+...+1/2013).x+2013=2014/1+2015/2+...+4025/2012+4026/2013
tìm x biết ( 1/2 + 1/3+... + 1/2014) x=2013/1 +2012/2+....+2/2012+1/2013
giúp mình gấp với, đúng mình tick cho nha
tìm x: (1/2+..+1/2014).x =1/2013+1/2012+........+2012/2+2013/1
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\frac{2013}{1}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+1\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
=> x = 2014
Đề bài bn chép sai 1 chút nên mk sửa lại và lm như trên
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\frac{2013}{1}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+1\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
\(\Rightarrow x=2014\)