Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ninh Thế Quang Nhật
Xem chi tiết
SKT_ Lạnh _ Lùng
30 tháng 3 2016 lúc 20:08

\(\frac{1}{5}+\frac{1}{14}+\frac{1}{27}+\frac{1}{43}+\frac{1}{61}+\frac{1}{89}+\frac{1}{111}=0,368,..\) khi đem tu chia cho mau

1:2=0,5 CMR=0,5>0,368..

Khương Kiến Khoa
9 tháng 4 2021 lúc 9:09

ta có A=1/5+1/14+1/27+1/43+1/61+1/89+1/111

=1/5+(1/14+1/27+1/43)+(1/61+1/89+1/111)<1/5 +(1/12+1/12+1/12)+(1/60+1/60+1/60)=1/5+1/4+1/20=1/2

ta suy ra A<1/2(đpcm)

Khách vãng lai đã xóa
Ninh Thế Quang Nhật
Xem chi tiết
Vũ Lê Ngọc Liên
6 tháng 3 2016 lúc 19:26

Bất đẳng thức à bạn ?

Ninh Thế Quang Nhật
Xem chi tiết
Ninh Thế Quang Nhật
Xem chi tiết
Ninh Thế Quang Nhật
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Hoàng Anh Tuấn
4 tháng 10 2021 lúc 15:36

yutyugubhujyikiu

Khách vãng lai đã xóa
pham thi cham anh
Xem chi tiết
Vũ Trụ Bao La
Xem chi tiết
Nguyễn Ngọc Quý
3 tháng 9 2015 lúc 20:49

\(\frac{19}{28};\frac{80}{79};\frac{112}{111};\frac{2013}{2012}\)

\(\frac{99}{100};\frac{61}{62};\frac{43}{45};\frac{15}{17}\)

Mina
Xem chi tiết
Myy_Yukru
23 tháng 4 2018 lúc 17:20

Ta có: \(\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}.\)

\(=\frac{1}{5}+\left(\frac{1}{14}+\frac{1}{31}+\frac{1}{44}\right)+\left(\frac{1}{61}+\frac{1}{84}+\frac{1}{96}\right)\)

Ta thấy \(\frac{1}{14}< \frac{1}{12}\)

            \(\frac{1}{31}< \frac{1}{12}\)

            \(\frac{1}{44}< \frac{1}{12}\)

\(=>\frac{1}{14}+\frac{1}{31}+\frac{1}{44}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}\)

\(=>\frac{1}{14}+\frac{1}{31}+\frac{1}{44}< \frac{1}{12}.3\left(1\right)\)

Ta lại thấy \(\frac{1}{61}< \frac{1}{60}\)

                \(\frac{1}{84}< \frac{1}{60}\)

                \(\frac{1}{96}< \frac{1}{60}\)

\(=>\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}\)

\(=>\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{60}.3\left(2\right)\)

Từ (1) và (2) suy ra: \(\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3\)

\(=>\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{5}+3.\left(\frac{1}{12}+\frac{1}{60}\right)\)

\(=>\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{2}\)

\(=>Đpcm\)