1.2+2.3+3.4+4.5+.......+1999.2000
1.2+2.3+3.4+4.5+.........+1999.2000 TÍNH
ta có :
A=1.2+2.3+3.4+4.5+...1999.2000
B=1.1+2.2+3.3+4.4+....1999.1999
C=1.2.3+2.3.4+3.4.5+....+48.49.50
Tính nhanh:
A=1.2+2.3+3.4+4.5+...1999.2000
B=1.1+2.2+3.3+4.4+....1999.1999
C=1.2.3+2.3.4+3.4.5+....+48.49.50
\(ChoS=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)
Cần đề Công Nghệ hoặc Ngữ Văn tiếng việt (KT1T)
Tks!!!!
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1999}+\frac{1}{2000}\)
\(S=1-\frac{1}{2000}\)
\(S=\frac{1999}{2000}\)
Đây là bài làm của mk :
S = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/1999 * 2000
=> S = 1 - 1/2 + 1/2 - 1/3 + ... + 1/1999 - 1/2000
=> S = 1 - 1 / 2000
=> S = 2000/2000 - 1/2000 = 1999/2000
Chúc bn học tốt !
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1999.2000}\)
\(\Leftrightarrow S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1999}-\frac{1}{2000}\)
\(\Leftrightarrow S=1-\frac{1}{2000}\)
\(\Leftrightarrow S=\frac{1999}{2000}\)
A = 1.2+2.3+3.4+.........................+1999.2000
A = 1.2+2.3+3.4+.........................+1999.2000
=> 3A= 1.2.(3-0) + 2.3.(4-1) + ... + 1999.2000(2001-1998)
=> 3A=1.2.3+2.3.4-1.2.3+...+1999.2000.2001-1998.1999.2000
=> 3A=1999.2000.2001
A=1999.2000.2001:3=2666666000
tính nhanh :
1.2 + 2.3 + 3.4 + 4.5 + ..... 1999.2000
1.1 + 2.2 + 3.3 +4.4 + ...1999.1999
1.2.3 + 2.3.4 + 3.4.5 + .... + 1998.1999.2000
giải nhanh giùm mình nha cảm ơn rất nhiều
tính nhanh;1.2+2.3+3.4+...+1999.2000
Đặt A = 1.2 + 2.3 + 3.4 + ..... + 1999.2000
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ..... + 1999.2000.3
=> 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ...... + 1999.2000.( 2001 - 1998 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 1999.2000.2001 - 1998.1999.2000
=> 3A = 1999.2000.2001
=> A = \(\frac{1999.2000.2001}{3}\)
ket qua A = \(\frac{1999.2000.2001}{3}\) ban nha
1/1.2+1/2.3+1/3.4+...+1/1999.2000
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1999.2000}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\)
\(=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{1999}+\frac{1}{1999}\right)-\frac{1}{2000}\)
\(=\frac{1}{1}+0+0+...+0-\frac{1}{2000}\)
\(=\frac{1}{1}-\frac{1}{2000}\)
\(=\frac{2000}{2000}-\frac{1}{2000}\)
\(=\frac{1999}{2000}\)
1/1.2 + 1/2.3 + 1/3.4+.....+1/1999.2000 = ?
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/1999.2000
= 1 -1/2+1/2-1/3+1/3-1/4+....+1/1999-1/2000
= 1- 1/2000
= 1999/2000