Cho S= 1x2x3+2x3x4+3x4x5+...+49x50x51
Tìm số tự nhiên n nhỏ nhất để 4s+n là số chính phương
Cho S = 1x2x3 + 2x3x4 + 3x4x5 + ........+ k(k+1)(k+2). Chứng minh: 4S + 1 là số chính phương
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
ta co:1/1*2*3=(1/1*2-1/2*3):2
1/2*3*4=(1/1*2-1/2*3):2
...
cu nhu the cho den:
1/98*99*100=(1/98*99-1/99*100):2
suy ra : 1/1*2*3+1/2*3*4+1/3*4*5+...+1/98*99*100
=(1/1*2-1/2*3):2+(1/2*3-1/3*4):2+...+(1/98*99-1/99*100):2
=(1/1*2-1/2*3+1/2*3-1/3*4+...+1/98*99-1/99*100):2
=(1/1*2-1/99*100):2
=(1/2-1/9900)
=(4950/9000-1/9000):2
=4949/9000:2
=4949/18000
học tốt
S = 1x2x3 + 2x3x4 + 3x4x5 + ...... + k(k+1)(k+2). Chứng minh 4S +1 là số chính phương
Lời giải:
$4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]$
$=[1.2.3.4+2.3.4.5+3.4.5.6+...k(k+1)(k+2)(k+3)]-[0.1.2.3+1.2.3.4+2.3.4.5+....+(k-1)k(k+1)(k+2)]$
$=k(k+1)(k+2)(k+3)$
$\Rightarrow 4S+1=k(k+1)(k+2)(k+3)+1=[k(k+3)][(k+1)(k+2)]+1$
$=(k^2+3k)(k^2+3k+2)+1=(k^2+3k)^2+2(k^2+3k)+1=(k^2+3k+1)^2$
$\Rightarrow 4S+1$ là số chính phương.
Cho S = 1x2x3 + 2x3x4 + 3x4x5 + ........+ k(k+1)(k+2). Chứng minh: 4S + 1 là số chính phương
\(n\left(n+1\right)\left(n+2\right)=\frac{1}{4}n\left(n+1\right)\left(n+2\right).4=\frac{1}{4}n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(=-\frac{1}{4}\left(n-1\right)n\left(n+1\right)\left(n+2\right)+\frac{1}{4}n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(4S=-0.1.2.3+1.2.3.4-1.2.3.4+2.3.4.5-....-\left(k-1\right)k\left(k+1\right)\left(k+2\right)+k\left(k+2\right)\left(k+2\right)\left(k+3\right)\)
\(=k\left(k+1\right)\left(k+2\right)\left(k+3\right)\)
\(4S+1=\left(k^2+3k\right)\left(k^2+3k+2\right)+1=\left(k^2+3k\right)^2+2.\left(k^2+3k\right)+1\)
\(=\left(k^2+3k+1\right)^2\)
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
Cho S = 1x2x3 + 2x3x4 + 3x4x5 + ........+ k(k+1)(k+2). Chứng minh: 4S + 1 là số chính phương
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
Câu1:Tìm n để 2^8 + 2^11 + 2^n là số chính phương
Câu 2: Cho S= 1x2x3+2x3x4+......+49x50x51.Tìm n để 4S+n là số chính phương
Câu 3:Tìm n để n^2 + 2n + 12 là số chính phương
Cho S=1.2.3+2.3.4+3.4.5+......+49.50.51
Tìm số tự nhiên n nhỏ nhất để 4S+n là số chính phương
Cho S=1.2.3+2.3.4+3.4.5+...+49.50.51, tìm số tự nhiên n nhỏ nhất sao cho 4S+n là số chính phương.
Cho S=1.2.3+2.3.4+3.4.5+.....+49.50.51
Tìm số thứ nhiên n nhỏ nhất để 4S là số chính phương
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 49.50.51
4S = 1.2.3.4 +2.3.4.4+3.4.5.4+....+49.50.51.4
=2.3.4.(1+4)+3.4.5.4+....+49.50.51.4
=3.4.5.(2+4)+......+49.50.51.4
=.....
=49.50.51.52
= 2.2.2.3.5.5.7.7.13.17
= 6497400
Mà V649740 = 2548.999804
=> 4S + n = 2549^2
=> 6497400 + n = 6497401
=> n = 6497401 - 6497400
=> n = 1
Vậy: n = 1
Cho s = 1.2.3 + 2.3.4 + 3.4.5 + ...... + 49.50.51.Tìm n nhỏ nhất để 4S + n là số chính phương
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 49.50.51
4S = 1.2.3.4 +2.3.4.4+3.4.5.4+....+49.50.51.4
=2.3.4.(1+4)+3.4.5.4+....+49.50.51.4
=3.4.5.(2+4)+......+49.50.51.4
=.....
=49.50.51.52
= 2.2.2.3.5.5.7.7.13.17
= 6497400
Mà V649740 = 2548.999804
=> 4S + n = 2549^2
=> 6497400 + n = 6497401
=> n = 6497401 - 6497400
=> n = 1
Vạy: n = 1 (thấy đúng thì !)