tìm x. Biết x= a-b+2016
a) Biết: x.f(x+2)=(x+3).f(x)
CMR: f(x) có ít nhất 3 nghiệm
b) Tìm GTLN của A= 2016 / ( x-2016)2016 + 2016
Tìm số nguyên x biết:
a.(x-3)=(x-3)^2
b.2016+2015+2014+.....+x=2016
a) ( x -3 ) = ( x -3 ) 2
Ta thấy : Giá trị x cần tìm phải lớn hơn 3 và khi ta thêm mũ giá trị không thay đổi
=> x - 3 phải = 0 hoặc 1
=> x = 4 hoặc 3
b) Ta có :
x + -x = 0
Mà kết quả = 2016 nên ta giữ nguyên 2016
=> Ta lấy số 2015 cho tới số đối của nó là -2015
Vậy số cần tìm ( x ) là -2015
a)x=4.
b)x=-2015.
k nha.Đúng 100000000% .có j kb
tìm x biết :
a) 2016 - 100 . ( x + 31 ) = 27 : 23
b) ( x + 8 )3 = 125
a) 2016 - 100.(x+31)=27:23
<=> 2016 - 100.(x+31) = 24 = 16
<=> 100.(x+31) = 2016 - 16 = 2000
<=> x+31 = 2000:100 = 20
<=> x = 20 - 31 = -11
b) (x+8)3 = 125
<=> (x+8)3 = 53
<=> x+8 = 5
<=> x = 5 - 8
<=> x = -3
Tìm x biết: (x + 2016) + a = 1984 + (2016 + a)
( x + 2016 ) + a = 1984 + ( 2016 + a )
Trong phép cộng có tính chất giao hoán , ta thấy
a và 2016 đều có ở hai vế .
Vậy x = 1984
đ/s : x = 1984
Tìm x, biết:
a) 3408 + x = 8034
b) x – 1276 = 4324
c) x × 8 = 2016
d) x : 6 = 2025
Câu1: tìm số nguyên x mà -35/6<x>-18/5
Câu2 : so sánh A=2015/2016+2016/2017 và B= 2015+2016/2016+2017
Câu3 : tìm số nguyên x biết rằng : 1/3+1/6+1/10...+2/x(x+1) =2007/2009
câu 1. tìm x nguyên để \(\frac{-35}{6}\)<x<\(\frac{-18}{5}\)
<=> -4,375<x<-3,6
mà x\(\in\)Z nên x={-4}
câu 2. A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)
Vì \(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\); \(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)
Vậy B<A
cau3:
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+.....+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{2007}{2009}\)
2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{x}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
\(\frac{1}{2}\)-\(\frac{1}{x+1}\)=\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2}\)-\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2009}\)
x+1=2009
x=2009-1
x=2008
Chứng minh rằng:
A: a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=b(a-c)(a+c-b)^2
B: TÌm x biết :
(2x^2+x-2017)^2+4(x^2-5x-2016)^2=4(2x^2+x-2017)(x^2-5x-2016)
Tìm x, biết:
a, 32x+2=92x+3
b, (x-2016)5=(x-2016)7
1. Tìm Min hoặc Max :
a) A = | x + 1| + 2016
b) B = 2017 - | 2x - 1/3|
c) C = | x + 1| + | y + 2| + 2016
d) D = -| x + 1/2| - | y - 1| +10
2. Tìm x, biết:
a) ( x+1)( y + 2) = 0
b) ( x + 2)( x - 3) > 0
c) ( x + 1/2) = 3
d) | x + 1| < 2016
e) | x - 1/2| > 5
Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1
a) ( x + 1 )( y + 2 ) = 0
\(\Rightarrow\) x + 1 = 0 hoặc y + 2 = 0
+) x + 1 = 0 \(\Rightarrow\) x = -1
+) y + 2 = 0 \(\Rightarrow\) y = -2
Vậy x = -1; y = -2