1 - Tìm giá trị nhỏ nhất của A = |x+3|+5
2 - Tìm giá trị lớn nhất của B = |x+3|+2014
3 - Tìm giá trị nhỏ nhất của C = |x+2014|+|2013-x|
tìm giá trị nhỏ nhất của biểu thức:
D=/x-2013/+/x-2014/+/x-2015/+/x-2016/
(/x-2013/ là giá trị tuyệt đối của x-2013 nhé ; /x-2014/,/x-2015/,/x-2016/ cũng vậy)
Tìm giá trị nhỏ nhất của A=/x-2010/+/x-2012/+/y-2013/+/x-2014/+2011
Tìm giá trị nhỏ nhất của biểu thức sau: A = |x - 2013| + |x - 2014| + |x- 2015|
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|=\left|x-2014\right|+\left(\left|x-2013\right|+\left|2015-x\right|\right)\)
\(\Leftrightarrow A\ge\left|x-2014\right|+\left|x-2013+2015-x\right|=\left|x-2014\right|+2\ge2\)
Dấu "=" xảy ra <=> \(\left(x-2013\right)\left(2015-x\right)\ge0\) và \(\left|x-2014\right|=0\)
\(\Leftrightarrow2013\le x\le2015\) và \(x=2014\) (thỏa mãn)
Vậy \(A_{min}=2\) tại \(x=2014\)
Tìm giá trị nhỏ nhất của biểu thức :
A = / x - 2013 / + / x - 2014 / + / x - 2015 /
Để A=|x-2013| + |x-2014| + |x-2015| có giá trị nhỏ nhất thì |x-2013| + |x-2014| + |x-2015 nhỏ nhất
=>|x-2013| + |x-2014| + |x-2015=0
Vậy A=0 là nhỏ nhất
Mk lm chưa đầy đủ còn nhiều thiếu sót bn thông cảm nha mk bận rồi
Tìm giá trị nhỏ nhất của biểu thức: A=|x-1|+|x-2|+|x-3|+...+|x-2013|+|x-2014|
tìm giá trị nhỏ nhất của biểu thức:P=|2013-x|+|2014-x|
Mấy bạn kia làm sai hết rồi !!
P = |2013 - x| + |2014 - x| = |2013 - x| + |x - 2014|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
P = |2013 - x| + |x - 2014| ≥ |2013 - x + x - 2014| =|- 1| = 1
Dấu "=" xảy ra <=> (2013 - x)(x - 2014) ≥ 0 <=> 2013 ≤ x ≤ 2014
Dậy gtnn của P là 1 <=> 2013 ≤ x ≤ 2014
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014-x\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)
\(\Rightarrow\)\(Min_P=4027\)
Ta có :
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014+x\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)
\(\Rightarrow Min_P=4027\)
Tìm giá trị nhỏ nhất của biểu thức sau:
A=
x-2013|+|x-2014|+|x-2015|
Ta có: A = |x-2013|+|x-2014|+|x-2015|
Vì \(\left|x-2013\right|\ge0;\left|x-2014\right|\ge0;\left|x-2015\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}x-2013=0\\x-2014=0\\x-2015=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=2014\\x=2015\end{cases}}}\)
Vậy x không có giá trị vì x không thể cùng lúc có tới 3 giá trị khác nhau
\(\Rightarrow x\in\theta\)
Tìm giá trị nhỏ nhất của:
A=/x-2011/+/x-2012/+/x-2013/+/x-2014/+/x-2015/
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|2015-x\right|\right)+\left(\left|x-2012\right|+\left|2014-x\right|\right)+\left|x-2013\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu. Ta có : \(\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\)
\(\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\)
\(\left|x-2013\right|\ge0\)
\(\Rightarrow A\ge4+2+0=6\)
Dấu "=" xảy ra khi \(\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}\) \(\Leftrightarrow x=2013\)
Vậy A đạt giá trị nhỏ nhất bằng 6 tại x = 2013
Tìm giá trị nhỏ nhất của biểu thức:
A=|x-2011|+|x-2012|+|x-2013|+|x-2014|+|x-2015|
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)
Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)
\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2011\le x\le2015\)
Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)
\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2012\le x\le2014\)
Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)
Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)
\(\Leftrightarrow x=2013\)
Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)
Hay \(A\ge6\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)
Vậy \(A_{min}=6\Leftrightarrow x=2013\)