Cho A = 1/2 + 3/4 + 5/6 + .....+ 199/200
Chứng minh A2 < 1/201
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a=1/2*3/4*5/6*...*199/200.chứng minh rằng A^2<1/201
Cho C=1/2.3/4.5/6...199/200. Chứng minh rằng A2 < 1/201
cho a/2 = 1/1*2*3+ 2/2*3*4+3/5*6*7+...+100/199*200*201 tính A/2
Cho \(A=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{199}{200}\)và chứng minh \(A^2< \frac{1}{201}\)
ta có 1/2<2/3 ; 3/4<4/5;5/6<6/7;...;199/200<200/201
suy ra A^2=1/2^2*3/4^2*5/6^2*...*199/200^2<1/2*2/3*3/4*4/5*5/6*6/7*...*199/200/200/201
suy ra A^2<1/201(đpcm)
Ta có:
\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)
\(\Rightarrow A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)
\(\Rightarrow A^2< \left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\right)\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}\right)\)
\(\Rightarrow A^2< \frac{1}{201}\left(đpcm\right)\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\)
\(\Rightarrow A< \frac{2}{3}.\frac{4}{5}\frac{6}{7}...\frac{200}{201}\)
\(\Rightarrow A.A< A.\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right)\)
\(\Rightarrow A^2< \frac{1}{201}\)(làm phần trc như Sakuraba Laura nhá)
Tính nhanh : a) -1-2-3-4-5-.....-199-200-201-202 b) 1+2-3-4+5+6-7-8+9+10-11-12+13+98-99-100+101+102
Giai chi tiet giup minh nha !!! Minh tich cho !!
A = - ( 1+2+3 +....+ 202) = - 203. 101 = -20503
B= ( 1+2-3-4) + ( 5+6-7-8) +..........+( 97+98 -99-100) + ( 101+102)
= -4 + (-4) .........+ (-4) + 203
= -4 .25 + 203 = 103
cho A=1/2*3/4*5/6*...*199/200
chứng minh rằng A^2 <1/201
giải giúp mình cách làm với ai làm đầu tiên mình sẽ cho đúng nhanh lên các bạn ơi
Ta có : \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)
Nên \(A< B\)
\(\Rightarrow A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\right)\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right)\)
\(\Rightarrow A.B=\frac{1}{201}\)
Vì \(A< B\)
\(\Rightarrow A^2< A.B=\frac{1}{201}\)
\(\Rightarrow A^2< \frac{1}{201}\)
\(\RightarrowĐPCM\)
A=1/2+3/4+5/6+........+199/200
chung to rang A^2<1/201
3)
C= (1/2).(3/4).(5/6).....(199/200).
C= (1.3.5….199)/(2.4.6…200)
C²= 1².3².5²….199²/(2².4².6²…200²)
Ta có: k²>k²-1=(k-1)(k+1) nên 2²>1.3; 4²>3.5 … 200²>199.201.
=>
C² < 1².3².5²….199²/[(1.3).(3.5).(5.7)…(199.2...
=1².3².5²….199²/(1.3.3.5.5.7…199.201)
=1².3².5²….199²/(1.3².5².7²…199².201)
=1/201
Cho C=\(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{199}{200}\) Chứng minh C2<\(\dfrac{1}{201}\)
Ta có:\(C=\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}.\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{199}{200}.\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{1}{201}\) (đpcm)
Ta có :
\(C=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{199}{200}< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{199}{200}.\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{1.2.3.4....199.200}{2.3.4.5....200.201}=\dfrac{1}{201}\)
\(\Rightarrow\left(đpcm\right)\)
Giups mk bài này vs everyone!!
Cho C =1/2 * 3/4 * 5/6 ......199/20.Chứng Minh:C^2<1/201
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\)( 1 )
Biểu thức C là tích của 100 phân số của hơn 1, trong đó các tử đều lẻ, các mẫu đều chẵn. Ta đưa ra biểu thức trung gian là một tích các phân số mà các tử đều chẵn, các mẫu đều lẻ. Thêm 1 vào tử và mẫu của mỗi phân số của C, giá trị của mỗi phân số tăng thêm, do đó :
\(C< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)( 2 )
Nhân ( 1 ) với ( 2 ) theo từng vế ta được :
\(C^2< \left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right)\)
Vế phải của bất đẳng thức trên bằng :
\(\frac{1.\left(3.5...199\right)}{2.4.6...200}.\frac{2.4.6...200}{\left(3.5...199\right).201}=\frac{1}{201}\)
Vậy \(C^2< \frac{1}{201}\)