Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vũ Minh Khôi
Xem chi tiết
Phương An
16 tháng 9 2016 lúc 20:20

\(x^2+2x+y^2-6y-10=0\)

\(x^2+2x+1+y^2-6x+9=10\)

\(\left(x+1\right)^2+\left(y-3\right)^2=0\)

\(\left(x+1\right)^2=\left(y-3\right)^2=0\)

\(x+1=y-3=0\)

Vậy \(x=-1;y=3\)

Nguyễn Trần Thành Đạt
16 tháng 9 2016 lúc 21:40

\(x^2\)\(+2x+y^2\)\(-6y-10=0\)

\(x^2\)\(+2x+1+y^2\)\(-6x+9=10\)

\(\left(x+1\right)^2\)+\(\left(y-3\right)^2\)\(=0\)

\(\left(x+1\right)^2\)\(=\left(y-3\right)^2\)\(=0\)

\(x+1=y-3=0\)

Vậy: \(x=-1;y=3\)

Loantrinh Vo Thi
Xem chi tiết
sieu cute
1 tháng 12 2017 lúc 17:40

đây mak lp6?

Loantrinh Vo Thi
1 tháng 12 2017 lúc 18:27

Giai dùm đi

Hoàng Thị An
Xem chi tiết
Nguyễn Vũ Linh Nga
Xem chi tiết
Nguyễn Phúc Hà My
Xem chi tiết
Nguyễn Minh Quang
8 tháng 11 2021 lúc 11:10

1. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)

2. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)

Khách vãng lai đã xóa
Tống Yến Nhi
Xem chi tiết
nguyenvankhoi196a
5 tháng 11 2017 lúc 14:11

Ví dụ : Tìm tập hợp các ước của 24

Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }

Ta có thể tìm các ước của a bằng cách lần lượt chia a cho

các số tự nhiên từ 1 đến a để xét xem a chia hết cho những

số nào ,khi đó các số ấy là ước của a

Đặng Bảo Ngọc
Xem chi tiết
Đinh Tuấn Việt
20 tháng 9 2015 lúc 18:17

x : 2 = y : 5 hay \(\frac{x}{2}=\frac{y}{5}\)

Ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)

\(\Rightarrow x=3.2=6\) và \(y=3.5=15\)

Phạm Thế Hiển
Xem chi tiết
Nguyễn Huy Tú
24 tháng 11 2016 lúc 10:56

Bài 1:

Giải:
Vì đại lượng x tỉ lệ nghịch với đại lượng y nên ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)\(x+y=14\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)

+) \(\frac{x}{4}=2\Rightarrow x=8\)

+) \(\frac{y}{3}=2\Rightarrow y=6\)

Vậy cặp số \(\left(x;y\right)\)\(\left(8;6\right)\)

Bài 2:
Giải:
Vì x và y là 2 đại lượng tỉ lệ nghịch nên ta có:
\(6x=8y\Rightarrow\frac{x}{8}=\frac{y}{6}\)\(2x-3y=10\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{6}=\frac{2x}{16}=\frac{3y}{18}=\frac{2x-3y}{16-18}=\frac{10}{-2}=-5\)

+) \(\frac{x}{8}=-5\Rightarrow x=-40\)

+) \(\frac{y}{6}=-5\Rightarrow y=-30\)

Vậy cặp số \(\left(x;y\right)\)\(\left(-40;-30\right)\)

Trương Hồng Hạnh
24 tháng 11 2016 lúc 11:00

1/ Ta có: x;y tỉ lệ nghịch với 3,4

=> \(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\) và x+y = 14

Áp dụng tính chất dãy tỉ số bằng nhau, Ta có:

\(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\)=\(\frac{x+y}{\frac{1}{3}+\frac{1}{4}}\)=\(\frac{\frac{14}{7}}{12}\)=24

\(\frac{\frac{x}{1}}{3}\)=24 => x = 8

\(\frac{\frac{y}{1}}{4}\)=24 => y = 6

Vậy x = 8 ; y =6

2/ Ta có: x;y tỉ lệ nghịch với 6;8

=> \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\) và 2x-3y = 10

Áp dụng tính chất dãy tỉ số bằng nhau:

Ta có: \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\)=\(\frac{2x-3y}{2.\frac{1}{6}-3.\frac{1}{8}}\)=\(\frac{\frac{10}{-1}}{24}\)=\(\frac{-5}{12}\)

\(\frac{\frac{x}{1}}{6}\)=\(\frac{-5}{12}\)=> x = \(\frac{-5}{72}\)

\(\frac{\frac{y}{1}}{8}\)=\(\frac{-5}{12}\)=> y = \(\frac{-5}{96}\)

Vậy x= \(\frac{-5}{72}\)

y = \(\frac{-5}{96}\)

võ thị mỹ như
Xem chi tiết
Nguyễn Huy Tú
17 tháng 2 2022 lúc 12:00

\(\dfrac{x}{2}=\dfrac{z}{3};\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}=\dfrac{x+y+z}{4+6+15}=\dfrac{50}{25}=2\Rightarrow x=8;y=12;y=30\)