CMR :
hai số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
a,CMR 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau
b, CMR 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
a) Gọi 2 số tự nhiên là a,a+1 và (a;a+1)=d
Ta có: a chia hết cho d
a+1 chia hết cho d
=> (a+1)-a =1 chia hết cho d
=> d thuộc Ư(1)={1}
Vậy d=1
=> 2 số tự nhiên là 2 số nguyên tố cùng nhau
b) Gọi 2 số lẻ liên tiếp là a ;a+2 và (a;a+2)=d
Ta có: a chia hết cho d
a+2 chia hết cho d
=> (a+2)-a=2 chia hết cho d
=> d thuộc Ư(2)={1;2}
Và a và a+2 ;à 2 số lẻ liên tiếp nên d ko =2 => d=1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
chứng minh
a) hai số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
b) hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c) 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau ( n thuộc N )
chứng minh rằng :
a, hai số tự nhiên liên tiếp ( khác 0 ) là hai số nguyên tố cùng nhau
b, hai số nguyên lẻ liên tiếp là hai số nguyên tố cùng nhau
c,2n + 1 và 3n + 1 (n thuộc N ) là hai số nguyên tố cùng nhau
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
Chứng minh rằng :
a) Hai số tự nhiên liên tiếp bất kì nguyên tố cùng nhau
b) Hai số tự nhiên lẻ liên tiếp bất kì nguyên tố cùng nhau
chứng minh rằng
a) hai số lẻ liên tiếp
b) 2N+5 VÀ 3n+7
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp nguyên tố cùng nha.
b) Hai số tự nhiên liên tiếp lẻ nguyên tố cùng nhau
Chứng minh rằng hai số tự nhiên liên tiếp là hai số nguyên tố cùng nhau.
Gọi số thứ nhất là n, số thứ hai là n+1, ƯC(n,n+1)=a
Ta có: n chia hết cho a(1); n+1 chia hết cho a(2)
Từ (1) và (2) ta được:
n+1-n chia hết cho a
=> 1 chia hết cho a
=> a=1
=> ƯC(n,n+1)=1
=> n và n+1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
Chứng minh rằng :
a) Hai số tự nhiên liên tiếp thì nguyên tố cùng nhau
b) Hai số lẻ liên tiếp thì nguyên tố cùng nhau
c) 2n+5 và 3n+7 là nguyên tố cùng nhau