CMR tích ba số TN chẵn liên tiếp chia hết cho 48
cmr: tích của ba số chẵn liên tiếp luôn chia hết cho 48
Trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 6;4;2 nên tích đó chia hết cho 2.4.6=48
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6
a) Chứng minh rằng: Tích của hai số chẵn liên tiếp thì chia hết cho 8
b) Chứng minh rằng: Tích của ba số chẵn liên tiếp thì chia hết cho 48
c) Chứng minh rằng: Tích của bốn số chẵn liên tiếp thì chia hết cho 384
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
ASDWE RHTYJNHWSAVFGB
chứng tỏ rằng:
a)tích hai số chẵn liên tiếp thì chia hết cho 8.
b)tích ba số chẵn liên tiếp thì chia hết cho 48
A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có:
2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
=>k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=>4k(k+1) chia hết cho 8(ĐPCM)
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=> 4k(k+1) chia hết cho 8
CMR : tích của 5 số tự nhiên liên tiếp bất kì thì chia hết cho 120
CMR: tích của 3 số chẵn tự nhiên liên tiếp bất kì thì chia hết cho 48
CMR : tích 2 số chẵn liên tiếp chia hết cho 48
CMR:
a) Tổng ba số chẵn liên tiếp chia hết cho 6
b) Tổng của ba số lẻ liên tiếp ko chia hết cho 6
c) Tích của hai số chẵn liên tiếp chia hết cho 8
Chứng minh rằng:
a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.
b, tổng của ba số lẻ liên tiếp không chia hết cho 6.
Chứng minh rằng:
a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.
b, tổng của ba số lẻ liên tiếp không chia hết cho 6.
a) Gọi ba số chẵn liên tiếp đó là 2n ; 2n + 2 ; 2n + 4
Tổng của ba số chẵn liên tiếp = 2n + 2n + 2 + 2n + 4 = 6n + 6
\(\hept{\begin{cases}6n⋮6\\6⋮6\end{cases}\Rightarrow}6n+6⋮6\)hay tổng của ba số chẵn liên tiếp chia hết cho 6 ( đpcm )
b) Gọi ba số lẻ liên tiếp đó là 2n + 1 ; 2n + 3 ; 2n + 5
Tổng của ba số lẻ liên tiếp = 2n + 1 + 2n + 3 + 2n + 5 = 6n + 9
\(\hept{\begin{cases}6n⋮6\\9⋮̸6\end{cases}\Rightarrow}6n+9⋮̸6\)hay tổng của ba số lẻ liên tiếp không chia hết cho 6 ( đpcm )
c) Gọi hai số chẵn liên tiếp đó là 2n và 2n + 2
Tích của hai số = 2n(2n + 2) = 4n2 + 4n = 4n( n + 1 )
n(n + 1) là tích của hai số liền nhau => Chia hết cho 2
=> 4n(n + 1) chia hết cho 8 hay tích của hai số chẵn liên tiếp chia hết cho 8 ( đpcm )
CMR tích của 3 số chẵn liên tiếp thì chia hết cho 48
Chứng tỏ rằng tích cảu ba số chẵn liên tiếp chia hết cho 48
Gọi 3 số chẵn liên tiếp cần tìm là : 2a - 2 ; 2a ; 2a +2 ( a thuộc N*)
Ta có : (2a - 2 ) * 2a * 2a + 2 = 2 ( a-1) * 2a * 2 ( a +1 ) = 8a ( a-1)(a+1)
Trong ba số tự nhiên thì chắc chắn có một số chia hết cho 2 và 1 số chia hết cho 3
=> Tích đó chia hết cho : 8*2*3=64
=> Chia hết cho 48
bạn ưi, 8.2.3=48 nha